Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement dpnp.nan_to_num() #1966

Merged
merged 15 commits into from
Aug 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
143 changes: 143 additions & 0 deletions dpnp/dpnp_iface_mathematical.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,7 @@
"mod",
"modf",
"multiply",
"nan_to_num",
"negative",
"nextafter",
"positive",
Expand All @@ -130,6 +131,13 @@
]


def _get_max_min(dtype):
"""Get the maximum and minimum representable values for an inexact dtype."""

f = dpnp.finfo(dtype)
return f.max, f.min


def _get_reduction_res_dt(a, dtype, _out):
"""Get a data type used by dpctl for result array in reduction function."""

Expand Down Expand Up @@ -2353,6 +2361,141 @@ def modf(x1, **kwargs):
)


def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None):
"""
Replace ``NaN`` with zero and infinity with large finite numbers (default
behaviour) or with the numbers defined by the user using the `nan`,
`posinf` and/or `neginf` keywords.

If `x` is inexact, ``NaN`` is replaced by zero or by the user defined value
in `nan` keyword, infinity is replaced by the largest finite floating point
values representable by ``x.dtype`` or by the user defined value in
`posinf` keyword and -infinity is replaced by the most negative finite
floating point values representable by ``x.dtype`` or by the user defined
value in `neginf` keyword.

For complex dtypes, the above is applied to each of the real and
imaginary components of `x` separately.

If `x` is not inexact, then no replacements are made.

For full documentation refer to :obj:`numpy.nan_to_num`.

Parameters
----------
x : {dpnp.ndarray, usm_ndarray}
Input data.
copy : bool, optional
Whether to create a copy of `x` (``True``) or to replace values
in-place (``False``). The in-place operation only occurs if casting to
an array does not require a copy.
nan : {int, float, bool}, optional
Value to be used to fill ``NaN`` values.
Default: ``0.0``.
posinf : {int, float, bool, None}, optional
Value to be used to fill positive infinity values. If no value is
passed then positive infinity values will be replaced with a very
large number.
Default: ``None``.
neginf : {int, float, bool, None} optional
Value to be used to fill negative infinity values. If no value is
passed then negative infinity values will be replaced with a very
small (or negative) number.
Default: ``None``.

Returns
-------
out : dpnp.ndarray
`x`, with the non-finite values replaced. If `copy` is ``False``, this
may be `x` itself.

See Also
--------
:obj:`dpnp.isinf` : Shows which elements are positive or negative infinity.
:obj:`dpnp.isneginf` : Shows which elements are negative infinity.
:obj:`dpnp.isposinf` : Shows which elements are positive infinity.
:obj:`dpnp.isnan` : Shows which elements are Not a Number (NaN).
:obj:`dpnp.isfinite` : Shows which elements are finite
(not NaN, not infinity)

Examples
--------
>>> import dpnp as np
>>> np.nan_to_num(np.array(np.inf))
array(1.79769313e+308)
>>> np.nan_to_num(np.array(-np.inf))
array(-1.79769313e+308)
>>> np.nan_to_num(np.array(np.nan))
array(0.)
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000,
-1.28000000e+002, 1.28000000e+002])
>>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333)
array([ 3.3333333e+07, 3.3333333e+07, -9.9990000e+03, -1.2800000e+02,
1.2800000e+02])
>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)])
>>> np.nan_to_num(y)
array([1.79769313e+308 +0.00000000e+000j, # may vary
0.00000000e+000 +0.00000000e+000j,
0.00000000e+000 +1.79769313e+308j])
>>> np.nan_to_num(y, nan=111111, posinf=222222)
array([222222.+111111.j, 111111. +0.j, 111111.+222222.j])

"""

dpnp.check_supported_arrays_type(x)

# Python boolean is a subtype of an integer
# so additional check for bool is not needed.
if not isinstance(nan, (int, float)):
raise TypeError(
"nan must be a scalar of an integer, float, bool, "
f"but got {type(nan)}"
)

out = dpnp.empty_like(x) if copy else x
x_type = x.dtype.type

if not issubclass(x_type, dpnp.inexact):
return x

parts = (
(x.real, x.imag) if issubclass(x_type, dpnp.complexfloating) else (x,)
)
parts_out = (
(out.real, out.imag)
if issubclass(x_type, dpnp.complexfloating)
else (out,)
)
max_f, min_f = _get_max_min(x.real.dtype)
if posinf is not None:
if not isinstance(posinf, (int, float)):
raise TypeError(
"posinf must be a scalar of an integer, float, bool, "
f"or be None, but got {type(posinf)}"
)
max_f = posinf
if neginf is not None:
if not isinstance(neginf, (int, float)):
raise TypeError(
"neginf must be a scalar of an integer, float, bool, "
f"or be None, but got {type(neginf)}"
)
min_f = neginf

for part, part_out in zip(parts, parts_out):
nan_mask = dpnp.isnan(part)
posinf_mask = dpnp.isposinf(part)
neginf_mask = dpnp.isneginf(part)

part = dpnp.where(nan_mask, nan, part, out=part_out)
part = dpnp.where(posinf_mask, max_f, part, out=part_out)
part = dpnp.where(neginf_mask, min_f, part, out=part_out)

return out


_NEGATIVE_DOCSTRING = """
Computes the numerical negative for each element `x_i` of input array `x`.

Expand Down
16 changes: 0 additions & 16 deletions tests/skipped_tests.tbl
Original file line number Diff line number Diff line change
Expand Up @@ -206,22 +206,6 @@ tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_par
tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_param_2_{shapes=[(3, 2), (3, 4)]}::test_invalid_broadcast
tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_param_3_{shapes=[(0,), (2,)]}::test_invalid_broadcast

tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_negative
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_for_old_numpy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_negative_for_old_numpy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_nan_arg
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf_arg
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[nan]
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[posinf]
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[neginf]

tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_scalar_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_copy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inplace
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_real_dtypes
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_with_tol_real_dtypes
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_true
Expand Down
16 changes: 0 additions & 16 deletions tests/skipped_tests_gpu.tbl
Original file line number Diff line number Diff line change
Expand Up @@ -260,22 +260,6 @@ tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_par
tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_param_2_{shapes=[(3, 2), (3, 4)]}::test_invalid_broadcast
tests/third_party/cupy/manipulation_tests/test_dims.py::TestInvalidBroadcast_param_3_{shapes=[(0,), (2,)]}::test_invalid_broadcast

tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_negative
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_for_old_numpy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_negative_for_old_numpy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_nan_arg
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inf_arg
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[nan]
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[posinf]
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_broadcast[neginf]

tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_scalar_nan
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_copy
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_nan_to_num_inplace
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_real_dtypes
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_with_tol_real_dtypes
tests/third_party/cupy/math_tests/test_misc.py::TestMisc::test_real_if_close_true
Expand Down
60 changes: 60 additions & 0 deletions tests/test_mathematical.py
Original file line number Diff line number Diff line change
Expand Up @@ -1116,6 +1116,66 @@ def test_subtract(self, dtype, lhs, rhs):
self._test_mathematical("subtract", dtype, lhs, rhs, check_type=False)


class TestNanToNum:
@pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True))
@pytest.mark.parametrize("shape", [(3,), (2, 3), (3, 2, 2)])
def test_nan_to_num(self, dtype, shape):
a = numpy.random.randn(*shape).astype(dtype)
if not dpnp.issubdtype(dtype, dpnp.integer):
a.flat[1] = numpy.nan
a_dp = dpnp.array(a)

result = dpnp.nan_to_num(a_dp)
expected = numpy.nan_to_num(a)
assert_allclose(result, expected)

@pytest.mark.parametrize(
"data", [[], [numpy.nan], [numpy.inf], [-numpy.inf]]
)
@pytest.mark.parametrize("dtype", get_float_complex_dtypes())
def test_empty_and_single_value_arrays(self, data, dtype):
a = numpy.array(data, dtype)
ia = dpnp.array(a)

result = dpnp.nan_to_num(ia)
expected = numpy.nan_to_num(a)
assert_allclose(result, expected)

def test_boolean_array(self):
a = numpy.array([True, False, numpy.nan], dtype=bool)
ia = dpnp.array(a)

result = dpnp.nan_to_num(ia)
expected = numpy.nan_to_num(a)
assert_allclose(result, expected)

def test_errors(self):
ia = dpnp.array([0, 1, dpnp.nan, dpnp.inf, -dpnp.inf])

# unsupported type `a`
a_np = dpnp.asnumpy(ia)
assert_raises(TypeError, dpnp.nan_to_num, a_np)

# unsupported type `nan`
i_nan = dpnp.array(1)
assert_raises(TypeError, dpnp.nan_to_num, ia, nan=i_nan)

# unsupported type `posinf`
i_posinf = dpnp.array(1)
assert_raises(TypeError, dpnp.nan_to_num, ia, posinf=i_posinf)

# unsupported type `neginf`
i_neginf = dpnp.array(1)
assert_raises(TypeError, dpnp.nan_to_num, ia, neginf=i_neginf)

@pytest.mark.parametrize("kwarg", ["nan", "posinf", "neginf"])
@pytest.mark.parametrize("value", [1 - 0j, [1, 2], (1,)])
def test_errors_diff_types(self, kwarg, value):
ia = dpnp.array([0, 1, dpnp.nan, dpnp.inf, -dpnp.inf])
with pytest.raises(TypeError):
dpnp.nan_to_num(ia, **{kwarg: value})


class TestNextafter:
@pytest.mark.parametrize("dt", get_float_dtypes())
@pytest.mark.parametrize(
Expand Down
14 changes: 14 additions & 0 deletions tests/test_sycl_queue.py
Original file line number Diff line number Diff line change
Expand Up @@ -2336,3 +2336,17 @@ def test_astype(device_x, device_y):
sycl_queue = dpctl.SyclQueue(device_y)
y = dpnp.astype(x, dtype="f4", device=sycl_queue)
assert_sycl_queue_equal(y.sycl_queue, sycl_queue)


@pytest.mark.parametrize("copy", [True, False], ids=["True", "False"])
@pytest.mark.parametrize(
"device",
valid_devices,
ids=[device.filter_string for device in valid_devices],
)
def test_nan_to_num(copy, device):
a = dpnp.array([-dpnp.nan, -1, 0, 1, dpnp.nan], device=device)
result = dpnp.nan_to_num(a, copy=copy)

assert_sycl_queue_equal(result.sycl_queue, a.sycl_queue)
assert copy == (result is not a)
10 changes: 10 additions & 0 deletions tests/test_usm_type.py
Original file line number Diff line number Diff line change
Expand Up @@ -1361,3 +1361,13 @@ def test_histogram_bin_edges(usm_type_v, usm_type_w):
assert v.usm_type == usm_type_v
assert w.usm_type == usm_type_w
assert edges.usm_type == du.get_coerced_usm_type([usm_type_v, usm_type_w])


@pytest.mark.parametrize("copy", [True, False], ids=["True", "False"])
@pytest.mark.parametrize("usm_type_a", list_of_usm_types, ids=list_of_usm_types)
def test_nan_to_num(copy, usm_type_a):
a = dp.array([-dp.nan, -1, 0, 1, dp.nan], usm_type=usm_type_a)
result = dp.nan_to_num(a, copy=copy)

assert result.usm_type == usm_type_a
assert copy == (result is not a)
14 changes: 8 additions & 6 deletions tests/third_party/cupy/math_tests/test_misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -245,6 +245,7 @@ def test_nan_to_num_inf(self):
def test_nan_to_num_nan(self):
self.check_unary_nan("nan_to_num")

@pytest.mark.skip(reason="Scalar input is not supported")
@testing.numpy_cupy_allclose(atol=1e-5)
def test_nan_to_num_scalar_nan(self, xp):
return xp.nan_to_num(xp.nan)
Expand All @@ -260,26 +261,27 @@ def test_nan_to_num_inf_arg(self):

@testing.numpy_cupy_array_equal()
def test_nan_to_num_copy(self, xp):
x = xp.asarray([0, 1, xp.nan, 4], dtype=xp.float64)
x = xp.asarray([0, 1, xp.nan, 4], dtype=cupy.default_float_type())
y = xp.nan_to_num(x, copy=True)
assert x is not y
return y

@testing.numpy_cupy_array_equal()
def test_nan_to_num_inplace(self, xp):
x = xp.asarray([0, 1, xp.nan, 4], dtype=xp.float64)
x = xp.asarray([0, 1, xp.nan, 4], dtype=cupy.default_float_type())
y = xp.nan_to_num(x, copy=False)
assert x is y
return y

@pytest.mark.skip(reason="nan, posinf, neginf as array are not supported")
@pytest.mark.parametrize("kwarg", ["nan", "posinf", "neginf"])
def test_nan_to_num_broadcast(self, kwarg):
for xp in (numpy, cupy):
x = xp.asarray([0, 1, xp.nan, 4], dtype=xp.float64)
y = xp.zeros((2, 4), dtype=xp.float64)
with pytest.raises(ValueError):
x = xp.asarray([0, 1, xp.nan, 4], dtype=cupy.default_float_type())
y = xp.zeros((2, 4), dtype=cupy.default_float_type())
with pytest.raises(TypeError):
vlad-perevezentsev marked this conversation as resolved.
Show resolved Hide resolved
xp.nan_to_num(x, **{kwarg: y})
with pytest.raises(ValueError):
with pytest.raises(TypeError):
xp.nan_to_num(0.0, **{kwarg: y})

@testing.for_all_dtypes(no_bool=True, no_complex=True)
Expand Down
Loading