Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Don't fuse take with dynamic inputs #6979

Merged
merged 4 commits into from
Nov 26, 2020
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions python/tvm/relay/op/_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -332,6 +332,25 @@ def take_shape_func(attrs, inputs, out_ndims):
return [_take_with_axis_shape_func(*inputs, convert(axis), out_ndims[0])]


@_reg.register_legalize("take")
def legalize_dyn_topk(attrs, inputs, types):
"""Legalize take op.
Parameters
----------
attrs : tvm.ir.Attrs
Attributes of current convolution
mbrookhart marked this conversation as resolved.
Show resolved Hide resolved
inputs : list of tvm.relay.Expr
The args of the Relay expr to be legalized
types : list of types
List of input and output types
Returns
-------
result : tvm.relay.Expr
The legalized expr
"""
return topi.take_legalize(attrs, inputs, types)


@script
def _argwhere_shape_func_1d(condition):
out = output_tensor((2,), "int64")
Expand Down
22 changes: 22 additions & 0 deletions python/tvm/topi/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -426,6 +426,28 @@ def take(a, indices, axis=None, mode="clip"):
return cpp.take(a, indices, int(axis), mode)


@tvm.target.generic_func
def take_legalize(attrs, inputs, types):
"""Legalizes dyn.topk op.

Parameters
----------
attrs : tvm.ir.Attrs
Attributes of current convolution
mbrookhart marked this conversation as resolved.
Show resolved Hide resolved
inputs : list of tvm.relay.Expr
The args of the Relay expr to be legalized
types : list of types
List of input and output types
Returns
-------
result : tvm.relay.Expr
The legalized expr
"""
if tvm.relay.ty.is_dynamic(types[0]):
return tvm.relay.take(tvm.relay.annotation.stop_fusion(inputs[0]), inputs[1], **attrs)
return None


def gather(data, axis, indices):
"""Gather values along given axis from given indices.

Expand Down
27 changes: 27 additions & 0 deletions tests/python/relay/test_pass_fuse_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np

import tvm
from tvm import relay
from tvm.relay import transform
Expand Down Expand Up @@ -757,6 +759,31 @@ def create_diamond_func(inp):
assert tvm.ir.structural_equal(fused, expected)


def test_fuse_dynamic_squeeze_slice_take():
input_data = [
np.random.random([1, 2, 4]).astype("float32"),
np.array([0]).astype("int64"),
]

x = relay.var("p0107", shape=(relay.Any(), relay.Any(), 4), dtype="float32")
take_val = relay.var("p166", shape=(relay.Any(),), dtype="int64")

squeeze = relay.op.squeeze(x, axis=[0])
strided_slice = relay.op.strided_slice(
squeeze, begin=[0, 0], end=[15130, 9223372036854775807], strides=[1, 1]
)
take = relay.op.take(strided_slice, take_val, axis=0)

mod = tvm.IRModule.from_expr(take)
ex = relay.create_executor("vm", mod=mod, ctx=tvm.cpu(), target="llvm")

result = ex.evaluate()(*input_data)

np_result = np.squeeze(input_data[0][:, input_data[1][0], :], axis=0)

assert np.allclose(result.asnumpy(), np_result)


if __name__ == "__main__":
test_fuse_simple()
test_conv2d_fuse()
Expand Down