Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rework the MAP metric. #8931

Merged
merged 5 commits into from
Mar 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 11 additions & 2 deletions doc/parameter.rst
Original file line number Diff line number Diff line change
Expand Up @@ -408,8 +408,17 @@ Specify the learning task and the corresponding learning objective. The objectiv

- ``ndcg``: `Normalized Discounted Cumulative Gain <http://en.wikipedia.org/wiki/NDCG>`_
- ``map``: `Mean Average Precision <http://en.wikipedia.org/wiki/Mean_average_precision#Mean_average_precision>`_
- ``ndcg@n``, ``map@n``: 'n' can be assigned as an integer to cut off the top positions in the lists for evaluation.
- ``ndcg-``, ``map-``, ``ndcg@n-``, ``map@n-``: In XGBoost, NDCG and MAP will evaluate the score of a list without any positive samples as 1. By adding "-" in the evaluation metric XGBoost will evaluate these score as 0 to be consistent under some conditions.

The `average precision` is defined as:

.. math::

AP@l = \frac{1}{min{(l, N)}}\sum^l_{k=1}P@k \cdot I_{(k)}

where :math:`I_{(k)}` is an indicator function that equals to :math:`1` when the document at :math:`k` is relevant and :math:`0` otherwise. The :math:`P@k` is the precision at :math:`k`, and :math:`N` is the total number of relevant documents. Lastly, the `mean average precision` is defined as the weighted average across all queries.

- ``ndcg@n``, ``map@n``: :math:`n` can be assigned as an integer to cut off the top positions in the lists for evaluation.
- ``ndcg-``, ``map-``, ``ndcg@n-``, ``map@n-``: In XGBoost, the NDCG and MAP evaluate the score of a list without any positive samples as :math:`1`. By appending "-" to the evaluation metric name, we can ask XGBoost to evaluate these scores as :math:`0` to be consistent under some conditions.
- ``poisson-nloglik``: negative log-likelihood for Poisson regression
- ``gamma-nloglik``: negative log-likelihood for gamma regression
- ``cox-nloglik``: negative partial log-likelihood for Cox proportional hazards regression
Expand Down
9 changes: 5 additions & 4 deletions python-package/xgboost/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from concurrent.futures import ThreadPoolExecutor
from contextlib import contextmanager
from io import StringIO
from pathlib import Path
from platform import system
from typing import (
Any,
Expand Down Expand Up @@ -443,7 +444,7 @@ def get_mq2008(
from sklearn.datasets import load_svmlight_files

src = "https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip"
target = dpath + "/MQ2008.zip"
target = os.path.join(os.path.expanduser(dpath), "MQ2008.zip")
if not os.path.exists(target):
request.urlretrieve(url=src, filename=target)

Expand All @@ -462,9 +463,9 @@ def get_mq2008(
qid_valid,
) = load_svmlight_files(
(
dpath + "MQ2008/Fold1/train.txt",
dpath + "MQ2008/Fold1/test.txt",
dpath + "MQ2008/Fold1/vali.txt",
Path(dpath) / "MQ2008" / "Fold1" / "train.txt",
Path(dpath) / "MQ2008" / "Fold1" / "test.txt",
Path(dpath) / "MQ2008" / "Fold1" / "vali.txt",
),
query_id=True,
zero_based=False,
Expand Down
7 changes: 6 additions & 1 deletion python-package/xgboost/testing/ranking.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,12 @@ def run_ranking_qid_df(impl: ModuleType, tree_method: str) -> None:
def neg_mse(*args: Any, **kwargs: Any) -> float:
return -float(mean_squared_error(*args, **kwargs))

ranker = xgb.XGBRanker(n_estimators=3, eval_metric=neg_mse, tree_method=tree_method)
ranker = xgb.XGBRanker(
n_estimators=3,
eval_metric=neg_mse,
tree_method=tree_method,
disable_default_eval_metric=True,
)
ranker.fit(df, y, eval_set=[(valid_df, y)])
score = ranker.score(valid_df, y)
assert np.isclose(score, ranker.evals_result()["validation_0"]["neg_mse"][-1])
Expand Down
2 changes: 1 addition & 1 deletion src/common/error_msg.h
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ constexpr StringView LabelScoreSize() {
}

constexpr StringView InfInData() {
return "Input data contains `inf` while `missing` is not set to `inf`";
return "Input data contains `inf` or a value too large, while `missing` is not set to `inf`";
}
} // namespace xgboost::error
#endif // XGBOOST_COMMON_ERROR_MSG_H_
26 changes: 13 additions & 13 deletions src/common/numeric.h
Original file line number Diff line number Diff line change
@@ -1,22 +1,23 @@
/*!
* Copyright 2022, XGBoost contributors.
/**
* Copyright 2022-2023 by XGBoost contributors.
*/
#ifndef XGBOOST_COMMON_NUMERIC_H_
#define XGBOOST_COMMON_NUMERIC_H_

#include <dmlc/common.h> // OMPException

#include <algorithm> // std::max
#include <iterator> // std::iterator_traits
#include <algorithm> // for std::max
#include <cstddef> // for size_t
#include <cstdint> // for int32_t
#include <iterator> // for iterator_traits
#include <vector>

#include "common.h" // AssertGPUSupport
#include "threading_utils.h" // MemStackAllocator, DefaultMaxThreads
#include "xgboost/context.h" // Context
#include "xgboost/host_device_vector.h" // HostDeviceVector

namespace xgboost {
namespace common {
namespace xgboost::common {

/**
* \brief Run length encode on CPU, input must be sorted.
Expand Down Expand Up @@ -111,11 +112,11 @@ inline double Reduce(Context const*, HostDeviceVector<float> const&) {
namespace cpu_impl {
template <typename It, typename V = typename It::value_type>
V Reduce(Context const* ctx, It first, It second, V const& init) {
size_t n = std::distance(first, second);
common::MemStackAllocator<V, common::DefaultMaxThreads()> result_tloc(ctx->Threads(), init);
common::ParallelFor(n, ctx->Threads(),
[&](auto i) { result_tloc[omp_get_thread_num()] += first[i]; });
auto result = std::accumulate(result_tloc.cbegin(), result_tloc.cbegin() + ctx->Threads(), init);
std::size_t n = std::distance(first, second);
auto n_threads = static_cast<std::size_t>(std::min(n, static_cast<std::size_t>(ctx->Threads())));
common::MemStackAllocator<V, common::DefaultMaxThreads()> result_tloc(n_threads, init);
common::ParallelFor(n, n_threads, [&](auto i) { result_tloc[omp_get_thread_num()] += first[i]; });
auto result = std::accumulate(result_tloc.cbegin(), result_tloc.cbegin() + n_threads, init);
return result;
}
} // namespace cpu_impl
Expand Down Expand Up @@ -144,7 +145,6 @@ void Iota(Context const* ctx, It first, It last,
});
}
}
} // namespace common
} // namespace xgboost
} // namespace xgboost::common

#endif // XGBOOST_COMMON_NUMERIC_H_
9 changes: 9 additions & 0 deletions src/common/ranking_utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,15 @@ void NDCGCache::InitOnCUDA(Context const*, MetaInfo const&) { common::AssertGPUS

DMLC_REGISTER_PARAMETER(LambdaRankParam);

void MAPCache::InitOnCPU(Context const*, MetaInfo const& info) {
auto const& h_label = info.labels.HostView().Slice(linalg::All(), 0);
CheckMapLabels(h_label, [](auto beg, auto end, auto op) { return std::all_of(beg, end, op); });
}

#if !defined(XGBOOST_USE_CUDA)
void MAPCache::InitOnCUDA(Context const*, MetaInfo const&) { common::AssertGPUSupport(); }
#endif // !defined(XGBOOST_USE_CUDA)

std::string ParseMetricName(StringView name, StringView param, position_t* topn, bool* minus) {
std::string out_name;
if (!param.empty()) {
Expand Down
5 changes: 5 additions & 0 deletions src/common/ranking_utils.cu
Original file line number Diff line number Diff line change
Expand Up @@ -204,4 +204,9 @@ void NDCGCache::InitOnCUDA(Context const* ctx, MetaInfo const& info) {
dh::LaunchN(MaxGroupSize(), cuctx->Stream(),
[=] XGBOOST_DEVICE(std::size_t i) { d_discount[i] = CalcDCGDiscount(i); });
}

void MAPCache::InitOnCUDA(Context const* ctx, MetaInfo const& info) {
auto const d_label = info.labels.View(ctx->gpu_id).Slice(linalg::All(), 0);
CheckMapLabels(d_label, CheckMAPOp{ctx->CUDACtx()});
}
} // namespace xgboost::ltr
65 changes: 65 additions & 0 deletions src/common/ranking_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -358,6 +358,71 @@ void CheckNDCGLabels(ltr::LambdaRankParam const& p, linalg::VectorView<float con
}
}

template <typename AllOf>
bool IsBinaryRel(linalg::VectorView<float const> label, AllOf all_of) {
auto s_label = label.Values();
return all_of(s_label.data(), s_label.data() + s_label.size(), [] XGBOOST_DEVICE(float y) {
return std::abs(y - 1.0f) < kRtEps || std::abs(y - 0.0f) < kRtEps;
});
}
/**
* \brief Validate label for MAP
*
* \tparam Implementation of std::all_of. Specified as a parameter to reuse the check for
* both CPU and GPU.
*/
template <typename AllOf>
void CheckMapLabels(linalg::VectorView<float const> label, AllOf all_of) {
auto s_label = label.Values();
auto is_binary = IsBinaryRel(label, all_of);
CHECK(is_binary) << "MAP can only be used with binary labels.";
}

class MAPCache : public RankingCache {
// Total number of relevant documents for each group
HostDeviceVector<double> n_rel_;
// \sum l_k/k
HostDeviceVector<double> acc_;
HostDeviceVector<double> map_;
// Number of samples in this dataset.
std::size_t n_samples_{0};

void InitOnCPU(Context const* ctx, MetaInfo const& info);
void InitOnCUDA(Context const* ctx, MetaInfo const& info);

public:
MAPCache(Context const* ctx, MetaInfo const& info, LambdaRankParam const& p)
: RankingCache{ctx, info, p}, n_samples_{static_cast<std::size_t>(info.num_row_)} {
if (ctx->IsCPU()) {
this->InitOnCPU(ctx, info);
} else {
this->InitOnCUDA(ctx, info);
}
}

common::Span<double> NumRelevant(Context const* ctx) {
if (n_rel_.Empty()) {
n_rel_.SetDevice(ctx->gpu_id);
n_rel_.Resize(n_samples_);
}
return ctx->IsCPU() ? n_rel_.HostSpan() : n_rel_.DeviceSpan();
}
common::Span<double> Acc(Context const* ctx) {
if (acc_.Empty()) {
acc_.SetDevice(ctx->gpu_id);
acc_.Resize(n_samples_);
}
return ctx->IsCPU() ? acc_.HostSpan() : acc_.DeviceSpan();
}
common::Span<double> Map(Context const* ctx) {
if (map_.Empty()) {
map_.SetDevice(ctx->gpu_id);
map_.Resize(this->Groups());
}
return ctx->IsCPU() ? map_.HostSpan() : map_.DeviceSpan();
}
};

/**
* \brief Parse name for ranking metric given parameters.
*
Expand Down
10 changes: 6 additions & 4 deletions src/common/threading_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,11 @@
#include <dmlc/omp.h>

#include <algorithm>
#include <cstdint> // std::int32_t
#include <cstdint> // for int32_t
#include <cstdlib> // for malloc, free
#include <limits>
#include <type_traits> // std::is_signed
#include <new> // for bad_alloc
#include <type_traits> // for is_signed
#include <vector>

#include "xgboost/logging.h"
Expand Down Expand Up @@ -266,7 +268,7 @@ class MemStackAllocator {
if (MaxStackSize >= required_size_) {
ptr_ = stack_mem_;
} else {
ptr_ = reinterpret_cast<T*>(malloc(required_size_ * sizeof(T)));
ptr_ = reinterpret_cast<T*>(std::malloc(required_size_ * sizeof(T)));
}
if (!ptr_) {
throw std::bad_alloc{};
Expand All @@ -278,7 +280,7 @@ class MemStackAllocator {

~MemStackAllocator() {
if (required_size_ > MaxStackSize) {
free(ptr_);
std::free(ptr_);
}
}
T& operator[](size_t i) { return ptr_[i]; }
Expand Down
97 changes: 62 additions & 35 deletions src/metric/rank_metric.cc
Original file line number Diff line number Diff line change
Expand Up @@ -284,37 +284,6 @@ struct EvalPrecision : public EvalRank {
}
};

/*! \brief Mean Average Precision at N, for both classification and rank */
struct EvalMAP : public EvalRank {
public:
explicit EvalMAP(const char* name, const char* param) : EvalRank(name, param) {}

double EvalGroup(PredIndPairContainer *recptr) const override {
PredIndPairContainer &rec(*recptr);
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
unsigned nhits = 0;
double sumap = 0.0;
for (size_t i = 0; i < rec.size(); ++i) {
if (rec[i].second != 0) {
nhits += 1;
if (i < this->topn) {
sumap += static_cast<double>(nhits) / (i + 1);
}
}
}
if (nhits != 0) {
sumap /= nhits;
return sumap;
} else {
if (this->minus) {
return 0.0;
} else {
return 1.0;
}
}
}
};

/*! \brief Cox: Partial likelihood of the Cox proportional hazards model */
struct EvalCox : public MetricNoCache {
public:
Expand Down Expand Up @@ -370,10 +339,6 @@ XGBOOST_REGISTER_METRIC(Precision, "pre")
.describe("precision@k for rank.")
.set_body([](const char* param) { return new EvalPrecision("pre", param); });

XGBOOST_REGISTER_METRIC(MAP, "map")
.describe("map@k for rank.")
.set_body([](const char* param) { return new EvalMAP("map", param); });

XGBOOST_REGISTER_METRIC(Cox, "cox-nloglik")
.describe("Negative log partial likelihood of Cox proportional hazards model.")
.set_body([](const char*) { return new EvalCox(); });
Expand Down Expand Up @@ -516,6 +481,68 @@ class EvalNDCG : public EvalRankWithCache<ltr::NDCGCache> {
}
};

class EvalMAPScore : public EvalRankWithCache<ltr::MAPCache> {
public:
using EvalRankWithCache::EvalRankWithCache;
const char* Name() const override { return name_.c_str(); }

double Eval(HostDeviceVector<float> const& predt, MetaInfo const& info,
std::shared_ptr<ltr::MAPCache> p_cache) override {
if (ctx_->IsCUDA()) {
auto map = cuda_impl::MAPScore(ctx_, info, predt, minus_, p_cache);
return Finalize(map.Residue(), map.Weights());
}

auto gptr = p_cache->DataGroupPtr(ctx_);
auto h_label = info.labels.HostView().Slice(linalg::All(), 0);
auto h_predt = linalg::MakeTensorView(ctx_, &predt, predt.Size());

auto map_gloc = p_cache->Map(ctx_);
std::fill_n(map_gloc.data(), map_gloc.size(), 0.0);
auto rank_idx = p_cache->SortedIdx(ctx_, predt.ConstHostSpan());

common::ParallelFor(p_cache->Groups(), ctx_->Threads(), [&](auto g) {
auto g_predt = h_predt.Slice(linalg::Range(gptr[g], gptr[g + 1]));
auto g_label = h_label.Slice(linalg::Range(gptr[g], gptr[g + 1]));
auto g_rank = rank_idx.subspan(gptr[g]);

auto n = std::min(static_cast<std::size_t>(param_.TopK()), g_label.Size());
double n_hits{0.0};
for (std::size_t i = 0; i < n; ++i) {
auto p = g_label(g_rank[i]);
n_hits += p;
map_gloc[g] += n_hits / static_cast<double>((i + 1)) * p;
}
for (std::size_t i = n; i < g_label.Size(); ++i) {
n_hits += g_label(g_rank[i]);
}
if (n_hits > 0.0) {
map_gloc[g] /= std::min(n_hits, static_cast<double>(param_.TopK()));
} else {
map_gloc[g] = minus_ ? 0.0 : 1.0;
}
});

auto sw = 0.0;
auto weight = common::MakeOptionalWeights(ctx_, info.weights_);
if (!weight.Empty()) {
CHECK_EQ(weight.weights.size(), p_cache->Groups());
}
for (std::size_t i = 0; i < map_gloc.size(); ++i) {
map_gloc[i] = map_gloc[i] * weight[i];
sw += weight[i];
}
auto sum = std::accumulate(map_gloc.cbegin(), map_gloc.cend(), 0.0);
return Finalize(sum, sw);
}
};

XGBOOST_REGISTER_METRIC(EvalMAP, "map")
.describe("map@k for ranking.")
.set_body([](char const* param) {
return new EvalMAPScore{"map", param};
});

XGBOOST_REGISTER_METRIC(EvalNDCG, "ndcg")
.describe("ndcg@k for ranking.")
.set_body([](char const* param) {
Expand Down
Loading