Skip to content

PredatorPrey_step10

RoiArthurB edited this page Feb 27, 2024 · 2 revisions

10. Charts

This 10th step illustrates how to define charts.

Formulation

  • Addition of a new display to visualize:
    • One chart representing the evolution of the quantity of prey and predator agents over time.
    • Two histograms representing the energy distribution of the prey and predator agents.

Model Definition

output

GAMA can display various chart types:

  • Time series
  • Pie charts
  • Histograms

A chart must be defined in a display: it behaves exactly like any other layer.

Definition of a chart:

chart chart_name type: chart_type {
    [data]
}

The data to draw are defined inside the chart block as follow, using the data statement:

data data_legend value: data_value

We add a new display called Population_information that refreshes every 5 simulation steps. Inside this display, we define 3 charts: one of type series (i.e. time series chart), two of type histogram:

  • "Species evolution"; background: white; size: {1, 0.5}; position: {0, 0}

    • data1: nb_preys; color : blue
    • data2: nb_predators; color : red
  • "Prey Energy Distribution"; background: lightGray; size: {0.5, 0.5}; position: {0, 0.5}

    • data "]0;0.25]": number of preys with (each.energy <= 0.25) ;
    • data "]0.25;0.5]": number of preys with ((each.energy > 0.25) and (each.energy <= 0.5)) ;
    • data "]0.5;0.75]": number of preys with ((each.energy > 0.5) and (each.energy <= 0.75)) ;
    • data "]0.75;1]": number of preys with (each.energy > 0.75) ;
  • "Predator Energy Distribution"; background: lightGray; size: {0.5, 0.5}; position: {0.5, 0.5}

    • data "]0;0.25]": number of predators with (each.energy <= 0.25) ;
    • data "]0.25;0.5]": number of predators with ((each.energy > 0.25) and (each.energy <= 0.5)) ;
    • data "]0.5;0.75]": number of predators with ((each.energy > 0.5) and (each.energy <= 0.75)) ;
    • data "]0.75;1]": number of predators with (each.energy > 0.75) ;

To evaluate the value of the data of the two histogram, we use the operator list count condition that returns the number of elements of list for which the condition is true.

display Population_information refresh:every(5#cycles) {
    chart "Species evolution" type: series size: {1,0.5} position: {0, 0} {
	data "number_of_preys" value: nb_preys color: #blue ;
	data "number_of_predator" value: nb_predators color: #red ;
    }
    chart "Prey Energy Distribution" type: histogram background: #lightgray size: {0.5,0.5} position: {0, 0.5} {
	data "]0;0.25]" value: prey count (each.energy <= 0.25) color:#blue;
	data "]0.25;0.5]" value: prey count ((each.energy > 0.25) and (each.energy <= 0.5)) color:#blue;
	data "]0.5;0.75]" value: prey count ((each.energy > 0.5) and (each.energy <= 0.75)) color:#blue;
	data "]0.75;1]" value: prey count (each.energy > 0.75) color:#blue;
    }
    chart "Predator Energy Distribution" type: histogram background: #lightgray size: {0.5,0.5} position: {0.5, 0.5} {
	data "]0;0.25]" value: predator count (each.energy <= 0.25) color: #red ;
	data "]0.25;0.5]" value: predator count ((each.energy > 0.25) and (each.energy <= 0.5)) color: #red ;
	data "]0.5;0.75]" value: predator count ((each.energy > 0.5) and (each.energy <= 0.75)) color: #red ;
	data "]0.75;1]" value: predator count (each.energy > 0.75) color: #red;
    }
}

Complete Model

https://github.com/gama-platform/gama.old/blob/GAMA_1.9.2/msi.gama.models/models/Tutorials/Predator%20Prey/models/Model%2010.gaml
  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Models
    1. Runtime Concepts
    2. Analyzing code performance
    3. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Cleaning OSM Data
  3. Diffusion
  4. Using Database
  5. Using FIPA ACL
  6. Using BDI with BEN
  7. Using Driving Skill
  8. Manipulate dates
  9. Manipulate lights
  10. Using comodel
  11. Save and restore Simulations
  12. Using network
  13. Headless mode
  14. Using Headless
  15. Writing Unit Tests
  16. Ensure model's reproducibility
  17. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally