Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Nginx does not run #1

Closed
nlacasse opened this issue Apr 26, 2018 · 4 comments
Closed

Nginx does not run #1

nlacasse opened this issue Apr 26, 2018 · 4 comments
Assignees

Comments

@nlacasse
Copy link
Collaborator

Depending on the configuration, you may see nginx fail with the error:

ioctl(FIOASYNC) failed while spawning "worker process" (25: Inappropriate ioctl for device)

Support for FIOASYNC is in progress, but it’s not available yet. For now, add
the line below to /etc/nginx/nginx.conf:

master_process off;
@seeekr
Copy link
Contributor

seeekr commented May 18, 2018

Am I correct in assuming that this will potentially make nginx behave in unexpected ways and thus it is not something one should attempt for any somewhat serious use of nginx + gvisor?

To quote the nginx docs at http://nginx.org/en/docs/ngx_core_module.html#master_process:

Syntax: | master_process on \| off;
-- | --
master_process on;
main

Determines whether worker processes are started. This directive is intended for nginx developers.

@nlacasse
Copy link
Collaborator Author

nlacasse commented Jun 5, 2018

I'm not totally sure what the "master_process" directive does, but the docs do state that it should not be used in production.

http://nginx.org/en/docs/faq/daemon_master_process_off.html

We are still working on the FIOASYNC support, at which point this workaround will not be necessary.

@tirumaraiselvan
Copy link

Is there an example to repro this behaviour? I am not having an issue with nginx:latest.

@nlacasse
Copy link
Collaborator Author

gVisor now supports FIOASYNC ioctl. I just verified that nginx runs without the "master_process: off" directive.

shentubot pushed a commit that referenced this issue Jun 22, 2018
Updates #1

PiperOrigin-RevId: 201760129
dvyukov pushed a commit to dvyukov/gvisor that referenced this issue Jun 23, 2018
Updates google#1

PiperOrigin-RevId: 201760129
Change-Id: Ifd8ce9e0f93c6771083dc9bf8d35a2800c13481a
shentubot pushed a commit that referenced this issue Jul 3, 2018
glibc's malloc also uses SYS_TIME. Permit it.

#0  0x0000000000de6267 in time ()
#1  0x0000000000db19d8 in get_nprocs ()
#2  0x0000000000d8a31a in arena_get2.part ()
#3  0x0000000000d8ab4a in malloc ()
#4  0x0000000000d3c6b5 in __sanitizer::InternalAlloc(unsigned long, __sanitizer::SizeClassAllocatorLocalCache<__sanitizer::SizeClassAllocator32<0ul, 140737488355328ull, 0ul, __sanitizer::SizeClassMap<3ul, 4ul, 8ul, 17ul, 64ul, 14ul>, 20ul, __sanitizer::TwoLevelByteMap<32768ull, 4096ull, __sanitizer::NoOpMapUnmapCallback>, __sanitizer::NoOpMapUnmapCallback> >*, unsigned long) ()
#5  0x0000000000d4cd70 in __tsan_go_start ()
#6  0x00000000004617a3 in racecall ()
#7  0x00000000010f4ea0 in runtime.findfunctab ()
#8  0x000000000043f193 in runtime.racegostart ()

Signed-off-by: Dmitry Vyukov <[email protected]>
[[email protected]: updated comments and commit message]
Signed-off-by: Michael Pratt <[email protected]>

Change-Id: Ibe2d0dc3035bf5052d5fb802cfaa37c5e0e7a09a
PiperOrigin-RevId: 203042627
dvyukov added a commit to dvyukov/gvisor that referenced this issue Jul 4, 2018
glibc's malloc also uses SYS_TIME. Permit it.

#0  0x0000000000de6267 in time ()
google#1  0x0000000000db19d8 in get_nprocs ()
google#2  0x0000000000d8a31a in arena_get2.part ()
google#3  0x0000000000d8ab4a in malloc ()
google#4  0x0000000000d3c6b5 in __sanitizer::InternalAlloc(unsigned long, __sanitizer::SizeClassAllocatorLocalCache<__sanitizer::SizeClassAllocator32<0ul, 140737488355328ull, 0ul, __sanitizer::SizeClassMap<3ul, 4ul, 8ul, 17ul, 64ul, 14ul>, 20ul, __sanitizer::TwoLevelByteMap<32768ull, 4096ull, __sanitizer::NoOpMapUnmapCallback>, __sanitizer::NoOpMapUnmapCallback> >*, unsigned long) ()
google#5  0x0000000000d4cd70 in __tsan_go_start ()
google#6  0x00000000004617a3 in racecall ()
google#7  0x00000000010f4ea0 in runtime.findfunctab ()
google#8  0x000000000043f193 in runtime.racegostart ()

Signed-off-by: Dmitry Vyukov <[email protected]>
[[email protected]: updated comments and commit message]
Signed-off-by: Michael Pratt <[email protected]>

Change-Id: Ibe2d0dc3035bf5052d5fb802cfaa37c5e0e7a09a
PiperOrigin-RevId: 203042627
tonistiigi referenced this issue in tonistiigi/gvisor Jan 30, 2019
Updates #1

PiperOrigin-RevId: 201760129
Change-Id: Ifd8ce9e0f93c6771083dc9bf8d35a2800c13481a
Upstream-commit: 9c0c4fd
tonistiigi referenced this issue in tonistiigi/gvisor Jan 30, 2019
glibc's malloc also uses SYS_TIME. Permit it.

#0  0x0000000000de6267 in time ()
#1  0x0000000000db19d8 in get_nprocs ()
#2  0x0000000000d8a31a in arena_get2.part ()
#3  0x0000000000d8ab4a in malloc ()
google#4  0x0000000000d3c6b5 in __sanitizer::InternalAlloc(unsigned long, __sanitizer::SizeClassAllocatorLocalCache<__sanitizer::SizeClassAllocator32<0ul, 140737488355328ull, 0ul, __sanitizer::SizeClassMap<3ul, 4ul, 8ul, 17ul, 64ul, 14ul>, 20ul, __sanitizer::TwoLevelByteMap<32768ull, 4096ull, __sanitizer::NoOpMapUnmapCallback>, __sanitizer::NoOpMapUnmapCallback> >*, unsigned long) ()
google#5  0x0000000000d4cd70 in __tsan_go_start ()
google#6  0x00000000004617a3 in racecall ()
google#7  0x00000000010f4ea0 in runtime.findfunctab ()
google#8  0x000000000043f193 in runtime.racegostart ()

Signed-off-by: Dmitry Vyukov <[email protected]>
[[email protected]: updated comments and commit message]
Signed-off-by: Michael Pratt <[email protected]>

Change-Id: Ibe2d0dc3035bf5052d5fb802cfaa37c5e0e7a09a
PiperOrigin-RevId: 203042627
Upstream-commit: 6144751
tanjianfeng added a commit to tanjianfeng/gvisor that referenced this issue Aug 2, 2019
Below command under hostinet network will lead to panic:

  $ cat /proc/net/tcp

It's caused by the wrong SizeOfTCPInfo.

  #0 runtime.panicindex()
  google#1 encoding/binary.littleEndian.Uint64
  google#2 encoding/binary.(*littleEndian).Uint64
  google#3 gvisor.dev/gvisor/pkg/binary.unmarshal
  google#4 gvisor.dev/gvisor/pkg/binary.unmarshal
  google#5 gvisor.dev/gvisor/pkg/binary.Unmarshal
  google#6 gvisor.dev/gvisor/pkg/sentry/socket/hostinet.(*socketOperations).State
  google#7 gvisor.dev/gvisor/pkg/sentry/fs/proc.(*netTCP).ReadSeqFileData

Correct SizeOfTCPInfo from 104 to 192 to fix it.

Fixes google#640

Signed-off-by: Jianfeng Tan <[email protected]>
copybara-service bot pushed a commit that referenced this issue Apr 27, 2020
copybara-service bot pushed a commit that referenced this issue May 12, 2020
ridwanmsharif referenced this issue in ridwanmsharif/gvisor Jun 2, 2020
This change adds more information about what needs to be done
to implement `/dev/fuse`
copybara-service bot pushed a commit that referenced this issue Jun 2, 2020
This change adds more information about what needs to be done
to implement `/dev/fuse`

FUTURE_COPYBARA_INTEGRATE_REVIEW=#2855 from ridwanmsharif:ridwanmsharif/fuse-doc-edit 5173c96
PiperOrigin-RevId: 314428000
copybara-service bot pushed a commit that referenced this issue Jul 3, 2024
Distributed training isn't working with PyTorch on certain A100 nodes.

Adds the missing ioctl `UVM_UNMAP_EXTERNAL` allowing for certain NCCL operations to succeed when using [`torch.distributed`](https://pytorch.org/docs/stable/distributed.html), fixing distributed training.

## Reproduction

This affects numerous A100 40GB and 80GB instances in our fleet. This reproduction requires 4 A100 GPUs, either 40GB or 80GB.

- **NVIDIA Driver Version**: 550.54.15
- **CUDA Version**: 12.4
- **NVIDIA device**: NVIDIA A100 80GB PCIe

### Steps

1. **Install gvisor**
```bash
URL="https://storage.googleapis.com/gvisor/releases/master/latest/${ARCH}"
wget -nc "${URL}/runsc" "${URL}/runsc.sha512"
chmod +x runsc
sudo cp runsc /usr/local/bin/runsc
sudo /usr/local/bin/runsc install
sudo systemctl reload docker
```

2. **Add GPU enabling gvisor options**

```json
{
    "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []
        },
        "runsc": {
            "path": "/usr/local/bin/runsc",
	    "runtimeArgs": ["--nvproxy", "--nvproxy-docker", "-debug-log=/tmp/runsc/", "-debug", "-strace"]

        }
    }
}
```
Reload configs with `sudo systemctl reload docker`.

3. **Run reproduction NCCL test**

This test creates one main process and N peer processes. Each peer process sends a torch `Tensor` to the main process using NCCL.

```Dockerfile
# Dockerfile
FROM python:3.9.15-slim-bullseye

RUN pip install torch numpy
COPY <<EOF repro.py
import argparse
import datetime
import os

import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def setup(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12355"
    dist.init_process_group("nccl", rank=rank, world_size=world_size, timeout=datetime.timedelta(seconds=600))
    torch.cuda.set_device(rank)

def cleanup():
    dist.destroy_process_group()

def send_tensor(rank, world_size):
    try:
        setup(rank, world_size)

        # rank receiving all tensors
        target_rank = world_size - 1

        dist.barrier()

        tensor = torch.ones(5).cuda(rank)
        if rank < target_rank:
            print(f"[RANK {rank}] sending tensor: {tensor}")
            dist.send(tensor=tensor, dst=target_rank)
        elif rank == target_rank:
            for other_rank in range(target_rank):
                tensor = torch.zeros(5).cuda(target_rank)
                dist.recv(tensor=tensor, src=other_rank)
                print(f"[RANK {target_rank}] received tensor from rank={other_rank}: {tensor}")

            print("PASS: NCCL working.")

    except Exception as e:
        print(f"[RANK {rank}] error in send_tensor: {e}")
        raise
    finally:
        cleanup()

def main(world_size: int = 2):
    mp.spawn(send_tensor, args=(world_size,), nprocs=world_size, join=True)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run torch-based NCCL tests")
    parser.add_argument("world_size", type=int, help="number of GPUs to run test on")
    args = parser.parse_args()

    if args.world_size < 2:
        raise RuntimeError(f"world_size needs to be larger than 1 {args.world_size}")

    main(args.world_size)
EOF

ENTRYPOINT ["python", "repro.py", "4"]
```
Build image with:

```
docker build -f Dockerfile .
```

Then run it with:
```
sudo docker run -it --shm-size=2.00gb --runtime=runsc --gpus='"device=GPU-742ea7fc-dd4f-612c-e860-499bf200a815,GPU-94a801d8-7713-acf6-337d-338b7cfdf19e,GPU-0d19cef2-10ce-e445-a0be-3d330e36c1fd,GPU-ac5046fb-020c-93e8-2784-f44aedbc5bbd"' 040a44863fb1
```

#### Failure (truncated)
```
...
Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7edda14cf897 in /usr/local/lib/python3.11/site-packages/torch/lib/libc10.so)
frame #1: <unknown function> + 0x5b3a23e (0x7edd8d73a23e in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7edd8d734c87 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7edd8d734f82 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7edd8d735fd1 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #8: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7edd54da9189 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #9: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7edd54db0610 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #10: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7edd54dcf978 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #11: <unknown function> + 0x5adc309 (0x7edd8d6dc309 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #12: <unknown function> + 0x5ae6f10 (0x7edd8d6e6f10 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #13: <unknown function> + 0x5ae6fa5 (0x7edd8d6e6fa5 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #14: <unknown function> + 0x5124446 (0x7edd8cd24446 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #15: <unknown function> + 0x1acf4b8 (0x7edd896cf4b8 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #16: <unknown function> + 0x5aee004 (0x7edd8d6ee004 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #17: <unknown function> + 0x5af36b5 (0x7edd8d6f36b5 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #18: <unknown function> + 0xd2fe8e (0x7edda032fe8e in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_python.so)
frame #19: <unknown function> + 0x47f074 (0x7edd9fa7f074 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_python.so)
<omitting python frames>
frame #35: <unknown function> + 0x29d90 (0x7edda2029d90 in /usr/lib/x86_64-linux-gnu/libc.so.6)
frame #36: __libc_start_main + 0x80 (0x7edda2029e40 in /usr/lib/x86_64-linux-gnu/libc.so.6)
frame #37: <unknown function> + 0x108e (0x55f950b0c08e in /usr/local/bin/python)
. This may indicate a possible application crash on rank 0 or a network set up issue.
...
```

### Fix
gvisor debug logs show:

```
W0702 20:36:17.577055  445833 uvm.go:148] [  22:  84] nvproxy: unknown uvm ioctl 66 = 0x42
```
I've implemented that ioctl in this PR. This is the output after the fix.

```
[RANK 2] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:2')
[RANK 0] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:0')
[RANK 1] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:1')
[RANK 3] received tensor from rank=0: tensor([1., 1., 1., 1., 1.], device='cuda:3')
[RANK 3] received tensor from rank=1: tensor([1., 1., 1., 1., 1.], device='cuda:3')
[RANK 3] received tensor from rank=2: tensor([1., 1., 1., 1., 1.], device='cuda:3')
PASS: NCCL working.
```
FUTURE_COPYBARA_INTEGRATE_REVIEW=#10610 from luiscape:master ee88734
PiperOrigin-RevId: 649146570
copybara-service bot pushed a commit that referenced this issue Jul 3, 2024
Distributed training isn't working with PyTorch on certain A100 nodes.

Adds the missing ioctl `UVM_UNMAP_EXTERNAL` allowing for certain NCCL operations to succeed when using [`torch.distributed`](https://pytorch.org/docs/stable/distributed.html), fixing distributed training.

## Reproduction

This affects numerous A100 40GB and 80GB instances in our fleet. This reproduction requires 4 A100 GPUs, either 40GB or 80GB.

- **NVIDIA Driver Version**: 550.54.15
- **CUDA Version**: 12.4
- **NVIDIA device**: NVIDIA A100 80GB PCIe

### Steps

1. **Install gvisor**
```bash
URL="https://storage.googleapis.com/gvisor/releases/master/latest/${ARCH}"
wget -nc "${URL}/runsc" "${URL}/runsc.sha512"
chmod +x runsc
sudo cp runsc /usr/local/bin/runsc
sudo /usr/local/bin/runsc install
sudo systemctl reload docker
```

2. **Add GPU enabling gvisor options**

```json
{
    "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []
        },
        "runsc": {
            "path": "/usr/local/bin/runsc",
	    "runtimeArgs": ["--nvproxy", "--nvproxy-docker", "-debug-log=/tmp/runsc/", "-debug", "-strace"]

        }
    }
}
```
Reload configs with `sudo systemctl reload docker`.

3. **Run reproduction NCCL test**

This test creates one main process and N peer processes. Each peer process sends a torch `Tensor` to the main process using NCCL.

```Dockerfile
# Dockerfile
FROM python:3.9.15-slim-bullseye

RUN pip install torch numpy
COPY <<EOF repro.py
import argparse
import datetime
import os

import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def setup(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12355"
    dist.init_process_group("nccl", rank=rank, world_size=world_size, timeout=datetime.timedelta(seconds=600))
    torch.cuda.set_device(rank)

def cleanup():
    dist.destroy_process_group()

def send_tensor(rank, world_size):
    try:
        setup(rank, world_size)

        # rank receiving all tensors
        target_rank = world_size - 1

        dist.barrier()

        tensor = torch.ones(5).cuda(rank)
        if rank < target_rank:
            print(f"[RANK {rank}] sending tensor: {tensor}")
            dist.send(tensor=tensor, dst=target_rank)
        elif rank == target_rank:
            for other_rank in range(target_rank):
                tensor = torch.zeros(5).cuda(target_rank)
                dist.recv(tensor=tensor, src=other_rank)
                print(f"[RANK {target_rank}] received tensor from rank={other_rank}: {tensor}")

            print("PASS: NCCL working.")

    except Exception as e:
        print(f"[RANK {rank}] error in send_tensor: {e}")
        raise
    finally:
        cleanup()

def main(world_size: int = 2):
    mp.spawn(send_tensor, args=(world_size,), nprocs=world_size, join=True)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run torch-based NCCL tests")
    parser.add_argument("world_size", type=int, help="number of GPUs to run test on")
    args = parser.parse_args()

    if args.world_size < 2:
        raise RuntimeError(f"world_size needs to be larger than 1 {args.world_size}")

    main(args.world_size)
EOF

ENTRYPOINT ["python", "repro.py", "4"]
```
Build image with:

```
docker build -f Dockerfile .
```

Then run it with:
```
sudo docker run -it --shm-size=2.00gb --runtime=runsc --gpus='"device=GPU-742ea7fc-dd4f-612c-e860-499bf200a815,GPU-94a801d8-7713-acf6-337d-338b7cfdf19e,GPU-0d19cef2-10ce-e445-a0be-3d330e36c1fd,GPU-ac5046fb-020c-93e8-2784-f44aedbc5bbd"' 040a44863fb1
```

#### Failure (truncated)
```
...
Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7edda14cf897 in /usr/local/lib/python3.11/site-packages/torch/lib/libc10.so)
frame #1: <unknown function> + 0x5b3a23e (0x7edd8d73a23e in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7edd8d734c87 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7edd8d734f82 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7edd8d735fd1 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #8: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7edd54da9189 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #9: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7edd54db0610 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #10: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7edd54dcf978 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #11: <unknown function> + 0x5adc309 (0x7edd8d6dc309 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #12: <unknown function> + 0x5ae6f10 (0x7edd8d6e6f10 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #13: <unknown function> + 0x5ae6fa5 (0x7edd8d6e6fa5 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #14: <unknown function> + 0x5124446 (0x7edd8cd24446 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #15: <unknown function> + 0x1acf4b8 (0x7edd896cf4b8 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #16: <unknown function> + 0x5aee004 (0x7edd8d6ee004 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #17: <unknown function> + 0x5af36b5 (0x7edd8d6f36b5 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #18: <unknown function> + 0xd2fe8e (0x7edda032fe8e in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_python.so)
frame #19: <unknown function> + 0x47f074 (0x7edd9fa7f074 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_python.so)
<omitting python frames>
frame #35: <unknown function> + 0x29d90 (0x7edda2029d90 in /usr/lib/x86_64-linux-gnu/libc.so.6)
frame #36: __libc_start_main + 0x80 (0x7edda2029e40 in /usr/lib/x86_64-linux-gnu/libc.so.6)
frame #37: <unknown function> + 0x108e (0x55f950b0c08e in /usr/local/bin/python)
. This may indicate a possible application crash on rank 0 or a network set up issue.
...
```

### Fix
gvisor debug logs show:

```
W0702 20:36:17.577055  445833 uvm.go:148] [  22:  84] nvproxy: unknown uvm ioctl 66 = 0x42
```
I've implemented that ioctl in this PR. This is the output after the fix.

```
[RANK 2] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:2')
[RANK 0] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:0')
[RANK 1] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:1')
[RANK 3] received tensor from rank=0: tensor([1., 1., 1., 1., 1.], device='cuda:3')
[RANK 3] received tensor from rank=1: tensor([1., 1., 1., 1., 1.], device='cuda:3')
[RANK 3] received tensor from rank=2: tensor([1., 1., 1., 1., 1.], device='cuda:3')
PASS: NCCL working.
```
FUTURE_COPYBARA_INTEGRATE_REVIEW=#10610 from luiscape:master ee88734
PiperOrigin-RevId: 649146570
copybara-service bot pushed a commit that referenced this issue Jul 3, 2024
Distributed training isn't working with PyTorch on certain A100 nodes.

Adds the missing ioctl `UVM_UNMAP_EXTERNAL` allowing for certain NCCL operations to succeed when using [`torch.distributed`](https://pytorch.org/docs/stable/distributed.html), fixing distributed training.

## Reproduction

This affects numerous A100 40GB and 80GB instances in our fleet. This reproduction requires 4 A100 GPUs, either 40GB or 80GB.

- **NVIDIA Driver Version**: 550.54.15
- **CUDA Version**: 12.4
- **NVIDIA device**: NVIDIA A100 80GB PCIe

### Steps

1. **Install gvisor**
```bash
URL="https://storage.googleapis.com/gvisor/releases/master/latest/${ARCH}"
wget -nc "${URL}/runsc" "${URL}/runsc.sha512"
chmod +x runsc
sudo cp runsc /usr/local/bin/runsc
sudo /usr/local/bin/runsc install
sudo systemctl reload docker
```

2. **Add GPU enabling gvisor options**

```json
{
    "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []
        },
        "runsc": {
            "path": "/usr/local/bin/runsc",
	    "runtimeArgs": ["--nvproxy", "--nvproxy-docker", "-debug-log=/tmp/runsc/", "-debug", "-strace"]

        }
    }
}
```
Reload configs with `sudo systemctl reload docker`.

3. **Run reproduction NCCL test**

This test creates one main process and N peer processes. Each peer process sends a torch `Tensor` to the main process using NCCL.

```Dockerfile
# Dockerfile
FROM python:3.9.15-slim-bullseye

RUN pip install torch numpy
COPY <<EOF repro.py
import argparse
import datetime
import os

import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def setup(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12355"
    dist.init_process_group("nccl", rank=rank, world_size=world_size, timeout=datetime.timedelta(seconds=600))
    torch.cuda.set_device(rank)

def cleanup():
    dist.destroy_process_group()

def send_tensor(rank, world_size):
    try:
        setup(rank, world_size)

        # rank receiving all tensors
        target_rank = world_size - 1

        dist.barrier()

        tensor = torch.ones(5).cuda(rank)
        if rank < target_rank:
            print(f"[RANK {rank}] sending tensor: {tensor}")
            dist.send(tensor=tensor, dst=target_rank)
        elif rank == target_rank:
            for other_rank in range(target_rank):
                tensor = torch.zeros(5).cuda(target_rank)
                dist.recv(tensor=tensor, src=other_rank)
                print(f"[RANK {target_rank}] received tensor from rank={other_rank}: {tensor}")

            print("PASS: NCCL working.")

    except Exception as e:
        print(f"[RANK {rank}] error in send_tensor: {e}")
        raise
    finally:
        cleanup()

def main(world_size: int = 2):
    mp.spawn(send_tensor, args=(world_size,), nprocs=world_size, join=True)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run torch-based NCCL tests")
    parser.add_argument("world_size", type=int, help="number of GPUs to run test on")
    args = parser.parse_args()

    if args.world_size < 2:
        raise RuntimeError(f"world_size needs to be larger than 1 {args.world_size}")

    main(args.world_size)
EOF

ENTRYPOINT ["python", "repro.py", "4"]
```
Build image with:

```
docker build -f Dockerfile .
```

Then run it with:
```
sudo docker run -it --shm-size=2.00gb --runtime=runsc --gpus='"device=GPU-742ea7fc-dd4f-612c-e860-499bf200a815,GPU-94a801d8-7713-acf6-337d-338b7cfdf19e,GPU-0d19cef2-10ce-e445-a0be-3d330e36c1fd,GPU-ac5046fb-020c-93e8-2784-f44aedbc5bbd"' 040a44863fb1
```

#### Failure (truncated)
```
...
Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7edda14cf897 in /usr/local/lib/python3.11/site-packages/torch/lib/libc10.so)
frame #1: <unknown function> + 0x5b3a23e (0x7edd8d73a23e in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7edd8d734c87 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7edd8d734f82 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7edd8d735fd1 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #8: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7edd54da9189 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #9: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7edd54db0610 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #10: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7edd54dcf978 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #11: <unknown function> + 0x5adc309 (0x7edd8d6dc309 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #12: <unknown function> + 0x5ae6f10 (0x7edd8d6e6f10 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #13: <unknown function> + 0x5ae6fa5 (0x7edd8d6e6fa5 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #14: <unknown function> + 0x5124446 (0x7edd8cd24446 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #15: <unknown function> + 0x1acf4b8 (0x7edd896cf4b8 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #16: <unknown function> + 0x5aee004 (0x7edd8d6ee004 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #17: <unknown function> + 0x5af36b5 (0x7edd8d6f36b5 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #18: <unknown function> + 0xd2fe8e (0x7edda032fe8e in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_python.so)
frame #19: <unknown function> + 0x47f074 (0x7edd9fa7f074 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_python.so)
<omitting python frames>
frame #35: <unknown function> + 0x29d90 (0x7edda2029d90 in /usr/lib/x86_64-linux-gnu/libc.so.6)
frame #36: __libc_start_main + 0x80 (0x7edda2029e40 in /usr/lib/x86_64-linux-gnu/libc.so.6)
frame #37: <unknown function> + 0x108e (0x55f950b0c08e in /usr/local/bin/python)
. This may indicate a possible application crash on rank 0 or a network set up issue.
...
```

### Fix
gvisor debug logs show:

```
W0702 20:36:17.577055  445833 uvm.go:148] [  22:  84] nvproxy: unknown uvm ioctl 66 = 0x42
```
I've implemented that ioctl in this PR. This is the output after the fix.

```
[RANK 2] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:2')
[RANK 0] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:0')
[RANK 1] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:1')
[RANK 3] received tensor from rank=0: tensor([1., 1., 1., 1., 1.], device='cuda:3')
[RANK 3] received tensor from rank=1: tensor([1., 1., 1., 1., 1.], device='cuda:3')
[RANK 3] received tensor from rank=2: tensor([1., 1., 1., 1., 1.], device='cuda:3')
PASS: NCCL working.
```
FUTURE_COPYBARA_INTEGRATE_REVIEW=#10610 from luiscape:master ee88734
PiperOrigin-RevId: 649146570
copybara-service bot pushed a commit that referenced this issue Jul 8, 2024
Distributed training isn't working with PyTorch on certain A100 nodes.

Adds the missing ioctl `UVM_UNMAP_EXTERNAL` allowing for certain NCCL operations to succeed when using [`torch.distributed`](https://pytorch.org/docs/stable/distributed.html), fixing distributed training.

## Reproduction

This affects numerous A100 40GB and 80GB instances in our fleet. This reproduction requires 4 A100 GPUs, either 40GB or 80GB.

- **NVIDIA Driver Version**: 550.54.15
- **CUDA Version**: 12.4
- **NVIDIA device**: NVIDIA A100 80GB PCIe

### Steps

1. **Install gvisor**
```bash
URL="https://storage.googleapis.com/gvisor/releases/master/latest/${ARCH}"
wget -nc "${URL}/runsc" "${URL}/runsc.sha512"
chmod +x runsc
sudo cp runsc /usr/local/bin/runsc
sudo /usr/local/bin/runsc install
sudo systemctl reload docker
```

2. **Add GPU enabling gvisor options**

```json
{
    "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []
        },
        "runsc": {
            "path": "/usr/local/bin/runsc",
	    "runtimeArgs": ["--nvproxy", "--nvproxy-docker", "-debug-log=/tmp/runsc/", "-debug", "-strace"]

        }
    }
}
```
Reload configs with `sudo systemctl reload docker`.

3. **Run reproduction NCCL test**

This test creates one main process and N peer processes. Each peer process sends a torch `Tensor` to the main process using NCCL.

```Dockerfile
# Dockerfile
FROM python:3.9.15-slim-bullseye

RUN pip install torch numpy
COPY <<EOF repro.py
import argparse
import datetime
import os

import torch
import torch.distributed as dist
import torch.multiprocessing as mp

def setup(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12355"
    dist.init_process_group("nccl", rank=rank, world_size=world_size, timeout=datetime.timedelta(seconds=600))
    torch.cuda.set_device(rank)

def cleanup():
    dist.destroy_process_group()

def send_tensor(rank, world_size):
    try:
        setup(rank, world_size)

        # rank receiving all tensors
        target_rank = world_size - 1

        dist.barrier()

        tensor = torch.ones(5).cuda(rank)
        if rank < target_rank:
            print(f"[RANK {rank}] sending tensor: {tensor}")
            dist.send(tensor=tensor, dst=target_rank)
        elif rank == target_rank:
            for other_rank in range(target_rank):
                tensor = torch.zeros(5).cuda(target_rank)
                dist.recv(tensor=tensor, src=other_rank)
                print(f"[RANK {target_rank}] received tensor from rank={other_rank}: {tensor}")

            print("PASS: NCCL working.")

    except Exception as e:
        print(f"[RANK {rank}] error in send_tensor: {e}")
        raise
    finally:
        cleanup()

def main(world_size: int = 2):
    mp.spawn(send_tensor, args=(world_size,), nprocs=world_size, join=True)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run torch-based NCCL tests")
    parser.add_argument("world_size", type=int, help="number of GPUs to run test on")
    args = parser.parse_args()

    if args.world_size < 2:
        raise RuntimeError(f"world_size needs to be larger than 1 {args.world_size}")

    main(args.world_size)
EOF

ENTRYPOINT ["python", "repro.py", "4"]
```
Build image with:

```
docker build -f Dockerfile .
```

Then run it with:
```
sudo docker run -it --shm-size=2.00gb --runtime=runsc --gpus='"device=GPU-742ea7fc-dd4f-612c-e860-499bf200a815,GPU-94a801d8-7713-acf6-337d-338b7cfdf19e,GPU-0d19cef2-10ce-e445-a0be-3d330e36c1fd,GPU-ac5046fb-020c-93e8-2784-f44aedbc5bbd"' 040a44863fb1
```

#### Failure (truncated)
```
...
Exception raised from recvBytes at ../torch/csrc/distributed/c10d/Utils.hpp:672 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7edda14cf897 in /usr/local/lib/python3.11/site-packages/torch/lib/libc10.so)
frame #1: <unknown function> + 0x5b3a23e (0x7edd8d73a23e in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #2: c10d::TCPStore::doWait(c10::ArrayRef<std::string>, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x2c7 (0x7edd8d734c87 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #3: c10d::TCPStore::doGet(std::string const&) + 0x32 (0x7edd8d734f82 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #4: c10d::TCPStore::get(std::string const&) + 0xa1 (0x7edd8d735fd1 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #5: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #6: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #7: c10d::PrefixStore::get(std::string const&) + 0x31 (0x7edd8d6ea371 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #8: c10d::ProcessGroupNCCL::broadcastUniqueNCCLID(ncclUniqueId*, bool, std::string const&, int) + 0xa9 (0x7edd54da9189 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #9: c10d::ProcessGroupNCCL::getNCCLComm(std::string const&, c10::Device&, c10d::OpType, int, bool) + 0xc50 (0x7edd54db0610 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #10: c10d::ProcessGroupNCCL::recv(std::vector<at::Tensor, std::allocator<at::Tensor> >&, int, int) + 0x5f8 (0x7edd54dcf978 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cuda.so)
frame #11: <unknown function> + 0x5adc309 (0x7edd8d6dc309 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #12: <unknown function> + 0x5ae6f10 (0x7edd8d6e6f10 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #13: <unknown function> + 0x5ae6fa5 (0x7edd8d6e6fa5 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #14: <unknown function> + 0x5124446 (0x7edd8cd24446 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #15: <unknown function> + 0x1acf4b8 (0x7edd896cf4b8 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #16: <unknown function> + 0x5aee004 (0x7edd8d6ee004 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #17: <unknown function> + 0x5af36b5 (0x7edd8d6f36b5 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_cpu.so)
frame #18: <unknown function> + 0xd2fe8e (0x7edda032fe8e in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_python.so)
frame #19: <unknown function> + 0x47f074 (0x7edd9fa7f074 in /usr/local/lib/python3.11/site-packages/torch/lib/libtorch_python.so)
<omitting python frames>
frame #35: <unknown function> + 0x29d90 (0x7edda2029d90 in /usr/lib/x86_64-linux-gnu/libc.so.6)
frame #36: __libc_start_main + 0x80 (0x7edda2029e40 in /usr/lib/x86_64-linux-gnu/libc.so.6)
frame #37: <unknown function> + 0x108e (0x55f950b0c08e in /usr/local/bin/python)
. This may indicate a possible application crash on rank 0 or a network set up issue.
...
```

### Fix
gvisor debug logs show:

```
W0702 20:36:17.577055  445833 uvm.go:148] [  22:  84] nvproxy: unknown uvm ioctl 66 = 0x42
```
I've implemented that ioctl in this PR. This is the output after the fix.

```
[RANK 2] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:2')
[RANK 0] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:0')
[RANK 1] sending tensor: tensor([1., 1., 1., 1., 1.], device='cuda:1')
[RANK 3] received tensor from rank=0: tensor([1., 1., 1., 1., 1.], device='cuda:3')
[RANK 3] received tensor from rank=1: tensor([1., 1., 1., 1., 1.], device='cuda:3')
[RANK 3] received tensor from rank=2: tensor([1., 1., 1., 1., 1.], device='cuda:3')
PASS: NCCL working.
```
FUTURE_COPYBARA_INTEGRATE_REVIEW=#10610 from luiscape:master ee88734
PiperOrigin-RevId: 649146570
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants