-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add yukicoder/2544.rs yukicoder/2545.rs yukicoder/2582.rs
- Loading branch information
Showing
3 changed files
with
385 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
use std::io::Read; | ||
|
||
fn get_word() -> String { | ||
let stdin = std::io::stdin(); | ||
let mut stdin=stdin.lock(); | ||
let mut u8b: [u8; 1] = [0]; | ||
loop { | ||
let mut buf: Vec<u8> = Vec::with_capacity(16); | ||
loop { | ||
let res = stdin.read(&mut u8b); | ||
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { | ||
break; | ||
} else { | ||
buf.push(u8b[0]); | ||
} | ||
} | ||
if buf.len() >= 1 { | ||
let ret = String::from_utf8(buf).unwrap(); | ||
return ret; | ||
} | ||
} | ||
} | ||
|
||
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } | ||
|
||
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 | ||
mod mod_int { | ||
use std::ops::*; | ||
pub trait Mod: Copy { fn m() -> i64; } | ||
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] | ||
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } | ||
impl<M: Mod> ModInt<M> { | ||
// x >= 0 | ||
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } | ||
fn new_internal(x: i64) -> Self { | ||
ModInt { x: x, phantom: ::std::marker::PhantomData } | ||
} | ||
pub fn pow(self, mut e: i64) -> Self { | ||
debug_assert!(e >= 0); | ||
let mut sum = ModInt::new_internal(1); | ||
let mut cur = self; | ||
while e > 0 { | ||
if e % 2 != 0 { sum *= cur; } | ||
cur *= cur; | ||
e /= 2; | ||
} | ||
sum | ||
} | ||
#[allow(dead_code)] | ||
pub fn inv(self) -> Self { self.pow(M::m() - 2) } | ||
} | ||
impl<M: Mod> Default for ModInt<M> { | ||
fn default() -> Self { Self::new_internal(0) } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { | ||
type Output = Self; | ||
fn add(self, other: T) -> Self { | ||
let other = other.into(); | ||
let mut sum = self.x + other.x; | ||
if sum >= M::m() { sum -= M::m(); } | ||
ModInt::new_internal(sum) | ||
} | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { | ||
type Output = Self; | ||
fn sub(self, other: T) -> Self { | ||
let other = other.into(); | ||
let mut sum = self.x - other.x; | ||
if sum < 0 { sum += M::m(); } | ||
ModInt::new_internal(sum) | ||
} | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { | ||
type Output = Self; | ||
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { | ||
fn add_assign(&mut self, other: T) { *self = *self + other; } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { | ||
fn sub_assign(&mut self, other: T) { *self = *self - other; } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { | ||
fn mul_assign(&mut self, other: T) { *self = *self * other; } | ||
} | ||
impl<M: Mod> Neg for ModInt<M> { | ||
type Output = Self; | ||
fn neg(self) -> Self { ModInt::new(0) - self } | ||
} | ||
impl<M> ::std::fmt::Display for ModInt<M> { | ||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { | ||
self.x.fmt(f) | ||
} | ||
} | ||
impl<M: Mod> ::std::fmt::Debug for ModInt<M> { | ||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { | ||
let (mut a, mut b, _) = red(self.x, M::m()); | ||
if b < 0 { | ||
a = -a; | ||
b = -b; | ||
} | ||
write!(f, "{}/{}", a, b) | ||
} | ||
} | ||
impl<M: Mod> From<i64> for ModInt<M> { | ||
fn from(x: i64) -> Self { Self::new(x) } | ||
} | ||
// Finds the simplest fraction x/y congruent to r mod p. | ||
// The return value (x, y, z) satisfies x = y * r + z * p. | ||
fn red(r: i64, p: i64) -> (i64, i64, i64) { | ||
if r.abs() <= 10000 { | ||
return (r, 1, 0); | ||
} | ||
let mut nxt_r = p % r; | ||
let mut q = p / r; | ||
if 2 * nxt_r >= r { | ||
nxt_r -= r; | ||
q += 1; | ||
} | ||
if 2 * nxt_r <= -r { | ||
nxt_r += r; | ||
q -= 1; | ||
} | ||
let (x, z, y) = red(nxt_r, r); | ||
(x, y - q * z, z) | ||
} | ||
} // mod mod_int | ||
|
||
macro_rules! define_mod { | ||
($struct_name: ident, $modulo: expr) => { | ||
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] | ||
pub struct $struct_name {} | ||
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } | ||
} | ||
} | ||
const MOD: i64 = 998_244_353; | ||
define_mod!(P, MOD); | ||
type MInt = mod_int::ModInt<P>; | ||
|
||
// Depends on MInt.rs | ||
fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) { | ||
let mut fac = vec![MInt::new(1); w]; | ||
let mut invfac = vec![0.into(); w]; | ||
for i in 1..w { | ||
fac[i] = fac[i - 1] * i as i64; | ||
} | ||
invfac[w - 1] = fac[w - 1].inv(); | ||
for i in (0..w - 1).rev() { | ||
invfac[i] = invfac[i + 1] * (i as i64 + 1); | ||
} | ||
(fac, invfac) | ||
} | ||
|
||
// https://yukicoder.me/problems/no/2544 (3.5) | ||
// L, R を固定した時の min の期待値は、x = R-L+1 <= N として C(N+1,x+1)/C(N,x) である。 | ||
// - min >= i となる確率 (1 <= i <= N-x+1) は C(N+1-i,x)/C(N,x) であり、それの総和を取れば良い。 | ||
// 1 <= x <= N であり、x ごとに (L,R) の組は N-x+1 通りある。 | ||
// なので 1 クエリーの期待値は \sum xC(N+1,x+1)/C(N,x) / {N(N+1)/2} である。 | ||
// 問題の答えは (期待値) * Q * (ありえるケースの個数) である。{N(N+1)/2} の指数は最終的に Q-1 乗になることに注意。 | ||
fn main() { | ||
let n: usize = get(); | ||
let q: i64 = get(); | ||
let (fac, invfac) = fact_init(n + 2); | ||
let mut tot = MInt::new(0); | ||
for x in 1..n + 1 { | ||
tot += fac[n + 1] * invfac[x + 1] * invfac[n] * fac[x] * (n - x + 1) as i64; | ||
} | ||
let nn = n as i64; | ||
let tri = nn * (nn + 1) / 2; | ||
tot *= fac[n] * MInt::new(tri).pow(q - 1) * q; | ||
println!("{}", tot); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
// https://yukicoder.me/problems/no/2545 (3.5) | ||
// https://nu50218.dev/posts/integer-division-by-multiplication/ の議論を使うことで、 | ||
// (x * 0x5555_5556) >> 32 が答えであることがわかる。 | ||
// x * 0x5555_5556 は常に 2^62 以下であるため問題ない。 | ||
fn main() { | ||
println!("67"); | ||
|
||
// A[4] = 5x | ||
println!("plus 5 1 1"); | ||
println!("plus 5 5 5"); | ||
println!("plus 4 1 5"); | ||
|
||
// A[4] = 0x55 * x | ||
println!("plus 5 4 4"); | ||
println!("plus 5 5 5"); | ||
println!("plus 5 5 5"); | ||
println!("plus 5 5 5"); | ||
println!("plus 4 4 5"); | ||
|
||
// A[4] = 0x5555 * x | ||
println!("plus 5 4 4"); | ||
for _ in 1..8 { | ||
println!("plus 5 5 5"); | ||
} | ||
println!("plus 4 4 5"); | ||
|
||
// A[4] = 0x55555555 * x | ||
println!("plus 5 4 4"); | ||
for _ in 1..16 { | ||
println!("plus 5 5 5"); | ||
} | ||
println!("plus 4 4 5"); | ||
|
||
// A[3] = 0x55555556 * x | ||
println!("plus 3 4 1"); | ||
|
||
for _ in 0..32 { | ||
println!("div 3 3"); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
use std::io::Read; | ||
|
||
fn get_word() -> String { | ||
let stdin = std::io::stdin(); | ||
let mut stdin=stdin.lock(); | ||
let mut u8b: [u8; 1] = [0]; | ||
loop { | ||
let mut buf: Vec<u8> = Vec::with_capacity(16); | ||
loop { | ||
let res = stdin.read(&mut u8b); | ||
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { | ||
break; | ||
} else { | ||
buf.push(u8b[0]); | ||
} | ||
} | ||
if buf.len() >= 1 { | ||
let ret = String::from_utf8(buf).unwrap(); | ||
return ret; | ||
} | ||
} | ||
} | ||
|
||
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } | ||
|
||
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 | ||
mod mod_int { | ||
use std::ops::*; | ||
pub trait Mod: Copy { fn m() -> i64; } | ||
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] | ||
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } | ||
impl<M: Mod> ModInt<M> { | ||
// x >= 0 | ||
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } | ||
fn new_internal(x: i64) -> Self { | ||
ModInt { x: x, phantom: ::std::marker::PhantomData } | ||
} | ||
pub fn pow(self, mut e: i64) -> Self { | ||
debug_assert!(e >= 0); | ||
let mut sum = ModInt::new_internal(1); | ||
let mut cur = self; | ||
while e > 0 { | ||
if e % 2 != 0 { sum *= cur; } | ||
cur *= cur; | ||
e /= 2; | ||
} | ||
sum | ||
} | ||
#[allow(dead_code)] | ||
pub fn inv(self) -> Self { self.pow(M::m() - 2) } | ||
} | ||
impl<M: Mod> Default for ModInt<M> { | ||
fn default() -> Self { Self::new_internal(0) } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { | ||
type Output = Self; | ||
fn add(self, other: T) -> Self { | ||
let other = other.into(); | ||
let mut sum = self.x + other.x; | ||
if sum >= M::m() { sum -= M::m(); } | ||
ModInt::new_internal(sum) | ||
} | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { | ||
type Output = Self; | ||
fn sub(self, other: T) -> Self { | ||
let other = other.into(); | ||
let mut sum = self.x - other.x; | ||
if sum < 0 { sum += M::m(); } | ||
ModInt::new_internal(sum) | ||
} | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { | ||
type Output = Self; | ||
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { | ||
fn add_assign(&mut self, other: T) { *self = *self + other; } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { | ||
fn sub_assign(&mut self, other: T) { *self = *self - other; } | ||
} | ||
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { | ||
fn mul_assign(&mut self, other: T) { *self = *self * other; } | ||
} | ||
impl<M: Mod> Neg for ModInt<M> { | ||
type Output = Self; | ||
fn neg(self) -> Self { ModInt::new(0) - self } | ||
} | ||
impl<M> ::std::fmt::Display for ModInt<M> { | ||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { | ||
self.x.fmt(f) | ||
} | ||
} | ||
impl<M: Mod> ::std::fmt::Debug for ModInt<M> { | ||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { | ||
let (mut a, mut b, _) = red(self.x, M::m()); | ||
if b < 0 { | ||
a = -a; | ||
b = -b; | ||
} | ||
write!(f, "{}/{}", a, b) | ||
} | ||
} | ||
impl<M: Mod> From<i64> for ModInt<M> { | ||
fn from(x: i64) -> Self { Self::new(x) } | ||
} | ||
// Finds the simplest fraction x/y congruent to r mod p. | ||
// The return value (x, y, z) satisfies x = y * r + z * p. | ||
fn red(r: i64, p: i64) -> (i64, i64, i64) { | ||
if r.abs() <= 10000 { | ||
return (r, 1, 0); | ||
} | ||
let mut nxt_r = p % r; | ||
let mut q = p / r; | ||
if 2 * nxt_r >= r { | ||
nxt_r -= r; | ||
q += 1; | ||
} | ||
if 2 * nxt_r <= -r { | ||
nxt_r += r; | ||
q -= 1; | ||
} | ||
let (x, z, y) = red(nxt_r, r); | ||
(x, y - q * z, z) | ||
} | ||
} // mod mod_int | ||
|
||
macro_rules! define_mod { | ||
($struct_name: ident, $modulo: expr) => { | ||
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] | ||
pub struct $struct_name {} | ||
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } | ||
} | ||
} | ||
const MOD: i64 = 998_244_353; | ||
define_mod!(P, MOD); | ||
type MInt = mod_int::ModInt<P>; | ||
|
||
// Depends on MInt.rs | ||
fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) { | ||
let mut fac = vec![MInt::new(1); w]; | ||
let mut invfac = vec![0.into(); w]; | ||
for i in 1..w { | ||
fac[i] = fac[i - 1] * i as i64; | ||
} | ||
invfac[w - 1] = fac[w - 1].inv(); | ||
for i in (0..w - 1).rev() { | ||
invfac[i] = invfac[i + 1] * (i as i64 + 1); | ||
} | ||
(fac, invfac) | ||
} | ||
|
||
// https://yukicoder.me/problems/no/2582 (3.5) | ||
// The author read the editorial before implementing this. | ||
// K = u_1 + ... + u_N の分割ごとに K!/N^K / (u_1+1)! / ... / (u_N + 1)! を足せばよい。 | ||
// これは [x^{N+K}](e^x-1)^N を計算すれば計算できる。 | ||
fn main() { | ||
let n: usize = get(); | ||
let k: i64 = get(); | ||
let (fac, invfac) = fact_init(n + k as usize + 1); | ||
let mut tot = MInt::new(0); | ||
for i in 0..n + 1 { | ||
let tmp = fac[n] * invfac[i] * invfac[n - i] * MInt::new(i as i64).pow(n as i64 + k); | ||
if (n + i) % 2 == 0 { | ||
tot += tmp; | ||
} else { | ||
tot -= tmp; | ||
} | ||
} | ||
tot *= fac[k as usize] * MInt::new(n as i64).pow(k).inv() * invfac[n + k as usize]; | ||
println!("{}", tot); | ||
} |