Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/91 position od #115

Merged
merged 3 commits into from
Jul 12, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,225 @@
#
# ISC License
#
# Copyright (c) 2023, Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import inspect
import os
import sys

import math
import numpy as np
from Basilisk.utilities import unitTestSupport

filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
splitPath = path.split('fswAlgorithms')

import matplotlib as mpl
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.patches import Ellipse

color_x = 'dodgerblue'
color_y = 'salmon'
color_z = 'lightgreen'
m2km = 1.0 / 1000.0

def StatePlot(x, testName, show_plots):

numStates = len(x[0,:])-1

t= np.zeros(len(x[:,0]))
for i in range(len(t)):
t[i] = x[i, 0]*1E-9

plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
plt.subplot(321)
plt.plot(t , x[:, 1], "b", label='Error Filter')
plt.legend(loc='lower right')
plt.title('First pos component (m)')
plt.grid()

plt.subplot(322)
plt.plot(t , x[:, 4], "b")
plt.title('Second rate component (m/s)')
plt.grid()

plt.subplot(323)
plt.plot(t , x[:, 2], "b")
plt.title('Second pos component (m)')
plt.grid()

plt.subplot(324)
plt.plot(t , x[:, 5], "b")
plt.xlabel('t(s)')
plt.title('Third rate component (m/s)')
plt.grid()

plt.subplot(325)
plt.plot(t , x[:, 3], "b")
plt.xlabel('t(s)')
plt.title('Third pos component (m)')
plt.grid()

plt.subplot(326)
plt.plot(t , x[:, 6], "b")
plt.xlabel('t(s)')
plt.title('Third rate component (m/s)')
plt.grid()

if show_plots:
plt.show()
plt.close()

def EnergyPlot(t, energy, testName, show_plots):

conserved= np.zeros(len(t))
for i in range(len(t)):
conserved[i] = (energy[i] - energy[0])/energy[0]

plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
plt.plot(t , conserved, "b", label='Energy')
plt.legend(loc='lower right')
plt.title('Energy ' + testName)
plt.grid()

if show_plots:
plt.show()
plt.close()


def StateCovarPlot(x, Pflat, testName, show_plots):

numStates = len(x[0,:])-1

P = np.zeros([len(Pflat[:,0]),numStates,numStates])
t= np.zeros(len(Pflat[:,0]))
for i in range(len(Pflat[:,0])):
t[i] = x[i, 0]*1E-9
P[i,:,:] = Pflat[i,1:(numStates*numStates+1)].reshape([numStates,numStates])


plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
plt.subplot(321)
plt.plot(t , x[:, 1], "b", label='Error Filter')
plt.plot(t , x[:, 1] + 3 * np.sqrt(P[:, 0, 0]), 'r--', label='Covar Filter')
plt.plot(t , x[:, 1] - 3 * np.sqrt(P[:, 0, 0]), 'r--')
plt.legend(loc='lower right')
plt.title('First pos component (m)')
plt.grid()

plt.subplot(322)
plt.plot(t , x[:, 4], "b")
plt.plot(t , x[:, 4]+3 * np.sqrt(P[:, 3, 3]), 'r--')
plt.plot(t , x[:, 4]-3 * np.sqrt(P[:, 3, 3]), 'r--')
plt.title('Second rate component (m/s)')
plt.grid()

plt.subplot(323)
plt.plot(t , x[:, 2], "b")
plt.plot(t , x[:, 2]+3 * np.sqrt(P[:, 1, 1]), 'r--')
plt.plot(t , x[:, 2]-3 * np.sqrt(P[:, 1, 1]), 'r--')
plt.title('Second pos component (m)')
plt.grid()

plt.subplot(324)
plt.plot(t , x[:, 5], "b")
plt.plot(t , x[:, 5]+3 * np.sqrt(P[:, 4, 4]), 'r--')
plt.plot(t , x[:, 5]-3 * np.sqrt(P[:, 4, 4]), 'r--')
plt.xlabel('t(s)')
plt.title('Third rate component (m/s)')
plt.grid()

plt.subplot(325)
plt.plot(t , x[:, 3], "b")
plt.plot(t , x[:, 3]+3 * np.sqrt(P[:, 2, 2]), 'r--')
plt.plot(t , x[:, 3]-3 * np.sqrt(P[:, 2, 2]), 'r--')
plt.xlabel('t(s)')
plt.title('Third pos component (m)')
plt.grid()

plt.subplot(326)
plt.plot(t , x[:, 6], "b")
plt.plot(t , x[:, 6]+3 * np.sqrt(P[:, 5, 5]), 'r--')
plt.plot(t , x[:, 6]-3 * np.sqrt(P[:, 5, 5]), 'r--')
plt.xlabel('t(s)')
plt.title('Third rate component (m/s)')
plt.grid()

if show_plots:
plt.show()
plt.close()



def PostFitResiduals(Res, noise, testName, show_plots):

MeasNoise = np.zeros(len(Res[:,0]))
t= np.zeros(len(Res[:,0]))
for i in range(len(Res[:,0])):
t[i] = Res[i, 0]*1E-9
MeasNoise[i] = 3*noise
# Don't plot zero values, since they mean that no measurement is taken
for j in range(len(Res[0,:])-1):
if -1E-10 < Res[i,j+1] < 1E-10:
Res[i, j+1] = np.nan

plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
plt.subplot(311)
plt.plot(t , Res[:, 1], "b.", label='Residual')
plt.plot(t , MeasNoise, 'r--', label='Covar')
plt.plot(t , -MeasNoise, 'r--')
plt.legend(loc='lower right')
plt.ylim([-10*noise, 10*noise])
plt.title('First Meas Comp (m)')
plt.grid()

plt.subplot(312)
plt.plot(t , Res[:, 2], "b.")
plt.plot(t , MeasNoise, 'r--')
plt.plot(t , -MeasNoise, 'r--')
plt.ylim([-10*noise, 10*noise])
plt.title('Second Meas Comp (m)')
plt.grid()

plt.subplot(313)
plt.plot(t , Res[:, 3], "b.")
plt.plot(t , MeasNoise, 'r--')
plt.plot(t , -MeasNoise, 'r--')
plt.ylim([-10*noise, 10*noise])
plt.title('Third Meas Comp (m)')
plt.grid()

if show_plots:
plt.show()
plt.close()

def plot_TwoOrbits(r_BN, r_BN2, show_plots):
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.set_xlabel('$R_x$, km')
ax.set_ylabel('$R_y$, km')
ax.set_zlabel('$R_z$, km')
ax.plot(r_BN[:, 1] * m2km, r_BN[:, 2] * m2km, r_BN[:, 3] * m2km, color_x, label="True orbit")
for i in range(len(r_BN2[:,0])):
if np.abs(r_BN2[i, 1])>0 or np.abs(r_BN2[i, 2])>0:
ax.scatter(r_BN2[i, 1] * m2km, r_BN2[i, 2] * m2km, r_BN2[i, 3] * m2km, color=color_y, label="Meas orbit")
ax.scatter(0, 0, color='r')
ax.set_title('Spacecraft Orbits')
if show_plots:
plt.show()
plt.close()
return
Loading