Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat/cosine_annealing_lr #25

Merged
merged 5 commits into from
Aug 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
92 changes: 92 additions & 0 deletions src/cosine_annealing.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
use burn::{lr_scheduler::LRScheduler, LearningRate};
#[derive(Clone, Debug)]
pub struct CosineAnnealingLR {
t_max: f64,
eta_min: f64,
init_lr: LearningRate,
step_count: f64,
current_lr: LearningRate,
}

impl CosineAnnealingLR {
pub fn init(t_max: f64, init_lr: LearningRate) -> CosineAnnealingLR {
CosineAnnealingLR {
t_max,
eta_min: 0.0,
init_lr,
step_count: 0.0,
current_lr: init_lr,
}
}
}

impl LRScheduler for CosineAnnealingLR {
type Record = usize;

fn step(&mut self) -> LearningRate {
self.step_count += 1.0;
use std::f64::consts::PI;
fn cosine_annealing_lr(
init_lr: LearningRate,
lr: LearningRate,
step_count: f64,
t_max: f64,
eta_min: f64,
) -> LearningRate {
let cosine_arg = PI * step_count / t_max;
if (step_count - 1.0 - t_max) % (2.0 * t_max) == 0.0 {
(init_lr - eta_min) * (1.0 - f64::cos(PI / t_max)) / 2.0
} else {
(1.0 + f64::cos(cosine_arg)) / (1.0 + f64::cos(PI * (step_count - 1.0) / t_max))
* (lr - eta_min)
+ eta_min
}
}
self.current_lr = cosine_annealing_lr(
self.init_lr,
self.current_lr,
self.step_count,
self.t_max,
self.eta_min,
);
self.current_lr
}

fn to_record(&self) -> Self::Record {
self.step_count as usize
}

fn load_record(mut self, record: Self::Record) -> Self {
self.step_count = record as LearningRate;
self
}
}

#[test]
fn test_lr_scheduler() {
let mut lr_scheduler = CosineAnnealingLR::init(100000.0, 1.0e-1);
let mut lrs = vec![];
for i in 0..200000 {
if i % 20000 == 0 {
lrs.push(lr_scheduler.current_lr);
}
lr_scheduler.step();
}
lrs.push(lr_scheduler.current_lr);
assert_eq!(
lrs,
vec![
0.1,
0.09045084971874785,
0.06545084971874875,
0.034549150281253875,
0.009549150281252989,
0.0,
0.009549150281252692,
0.03454915028125239,
0.06545084971874746,
0.09045084971874952,
0.10000000000000353
]
)
}
8 changes: 8 additions & 0 deletions src/dataset.rs
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,14 @@ impl FSRSDataset {
Self::new()
}

pub fn len(&self) -> usize {
self.dataset.len()
}

pub fn is_empty(&self) -> bool {
self.dataset.is_empty()
}

fn new() -> Self {
let dataset = InMemDataset::<FSRSItem>::new(anki_to_fsrs());
Self { dataset }
Expand Down
1 change: 1 addition & 0 deletions src/lib.rs
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
pub mod convertor;
mod cosine_annealing;
pub mod dataset;
pub mod model;
pub mod training;
Expand Down
8 changes: 7 additions & 1 deletion src/training.rs
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
use crate::cosine_annealing::CosineAnnealingLR;
use crate::dataset::{FSRSBatch, FSRSBatcher, FSRSDataset};
use crate::model::{Model, ModelConfig};
use crate::weight_clipper::weight_clipper;
Expand Down Expand Up @@ -127,6 +128,11 @@ pub fn train<B: ADBackend<FloatElem = f32>>(
.num_workers(config.num_workers)
.build(FSRSDataset::test());

let lr_scheduler = CosineAnnealingLR::init(
(FSRSDataset::train().len() * config.num_epochs) as f64,
config.learning_rate,
);

let learner = LearnerBuilder::new(artifact_dir)
// .metric_train_plot(AccuracyMetric::new())
// .metric_valid_plot(AccuracyMetric::new())
Expand All @@ -138,7 +144,7 @@ pub fn train<B: ADBackend<FloatElem = f32>>(
.build(
config.model.init::<B>(),
config.optimizer.init(),
config.learning_rate,
lr_scheduler,
);

let mut model_trained = learner.fit(dataloader_train, dataloader_test);
Expand Down
Loading