Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Segmentation] Enable feature vector output for MPA Segmentation #1158

Merged
merged 18 commits into from
Aug 9, 2022
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,11 @@
# See the License for the specific language governing permissions
# and limitations under the License.

from typing import Any, Dict, Optional, Union, Iterable
import warnings

import cv2
import numpy as np
from typing import Any, Dict, Optional

from openvino.model_zoo.model_api.models import SegmentationModel
from openvino.model_zoo.model_api.models.types import NumericalValue
Expand All @@ -23,6 +25,16 @@
from ote_sdk.utils.segmentation_utils import create_hard_prediction_from_soft_prediction


@check_input_parameters_type()
def get_actmap(
features: Union[np.ndarray, Iterable, int, float], output_res: Union[tuple, list]
):
am = cv2.resize(features, output_res)
am = cv2.applyColorMap(am, cv2.COLORMAP_JET)
am = cv2.cvtColor(am, cv2.COLOR_BGR2RGB)
return am


class BlurSegmentation(SegmentationModel):
__model__ = 'blur_segmentation'

Expand Down Expand Up @@ -60,17 +72,24 @@ def _get_outputs(self):
def postprocess(self, outputs: Dict[str, np.ndarray], metadata: Dict[str, Any]):
predictions = outputs[self.output_blob_name].squeeze()
soft_prediction = np.transpose(predictions, axes=(1, 2, 0))
feature_vector = outputs.get('repr_vector', None) # Optional output

hard_prediction = create_hard_prediction_from_soft_prediction(
soft_prediction=soft_prediction,
soft_threshold=self.soft_threshold,
blur_strength=self.blur_strength
)
hard_prediction = cv2.resize(hard_prediction, metadata['original_shape'][1::-1], 0, 0, interpolation=cv2.INTER_NEAREST)
soft_prediction = cv2.resize(soft_prediction, metadata['original_shape'][1::-1], 0, 0, interpolation=cv2.INTER_NEAREST)

metadata['soft_predictions'] = soft_prediction
metadata['feature_vector'] = feature_vector

if 'feature_vector' not in outputs or 'saliency_map' not in outputs:
warnings.warn('Could not find Feature Vector and Saliency Map in OpenVINO output. '
'Please rerun OpenVINO export or retrain the model.')
metadata["saliency_map"] = None
metadata["feature_vector"] = None
else:
metadata["saliency_map"] = get_actmap(
outputs["saliency_map"][0],
(metadata["original_shape"][1], metadata["original_shape"][0]),
)
metadata["feature_vector"] = outputs["feature_vector"]

return hard_prediction
Original file line number Diff line number Diff line change
Expand Up @@ -105,12 +105,11 @@ def pre_process(self, image: np.ndarray) -> Tuple[Dict[str, np.ndarray], Dict[st
@check_input_parameters_type()
def post_process(self, prediction: Dict[str, np.ndarray], metadata: Dict[str, Any]) -> AnnotationSceneEntity:
hard_prediction = self.model.postprocess(prediction, metadata)
soft_prediction = metadata['soft_predictions']
feature_vector = metadata['feature_vector']

saliency_map = metadata['saliency_map']
predicted_scene = self.converter.convert_to_annotation(hard_prediction, metadata)

return predicted_scene, soft_prediction, feature_vector
return predicted_scene, feature_vector, saliency_map

@check_input_parameters_type()
def forward(self, inputs: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
Expand Down Expand Up @@ -165,38 +164,25 @@ def infer(self,
inference_parameters: Optional[InferenceParameters] = None) -> DatasetEntity:
if inference_parameters is not None:
update_progress_callback = inference_parameters.update_progress
save_mask_visualization = not inference_parameters.is_evaluation
dump_saliency_map = not inference_parameters.is_evaluation
else:
update_progress_callback = default_progress_callback
save_mask_visualization = True
dump_saliency_map = True

dataset_size = len(dataset)
for i, dataset_item in enumerate(dataset, 1):
predicted_scene, soft_prediction, feature_vector = self.inferencer.predict(dataset_item.numpy)
predicted_scene, feature_vector, saliency_map = self.inferencer.predict(dataset_item.numpy)
dataset_item.append_annotations(predicted_scene.annotations)

if feature_vector is not None:
feature_vector_media = TensorEntity(name="representation_vector", numpy=feature_vector.reshape(-1))
dataset_item.append_metadata_item(feature_vector_media, model=self.model)

if save_mask_visualization:
for label_index, label in self._label_dictionary.items():
if label_index == 0:
continue

if len(soft_prediction.shape) == 3:
current_label_soft_prediction = soft_prediction[:, :, label_index]
else:
current_label_soft_prediction = soft_prediction

class_act_map = get_activation_map(current_label_soft_prediction)
result_media = ResultMediaEntity(name=f'{label.name}',
type='Soft Prediction',
label=label,
annotation_scene=dataset_item.annotation_scene,
roi=dataset_item.roi,
numpy=class_act_map)
dataset_item.append_metadata_item(result_media, model=self.model)
if dump_saliency_map and saliency_map is not None:
saliency_map_media = ResultMediaEntity(name="saliency_map", type="Saliency map",
annotation_scene=dataset_item.annotation_scene,
numpy=saliency_map, roi=dataset_item.roi)
dataset_item.append_metadata_item(saliency_map_media, model=self.model)

update_progress_callback(int(i / dataset_size * 100))

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
from mpa import MPAConstants
from mpa_tasks.apis import BaseTask, TrainType
from mpa_tasks.apis.segmentation import SegmentationConfig
from mpa_tasks.utils.data_utils import get_actmap
from mpa.utils.config_utils import MPAConfig
from mpa.utils.logger import get_logger
from ote_sdk.configuration import cfg_helper
Expand Down Expand Up @@ -71,6 +72,8 @@ def infer(self,
inference_parameters: Optional[InferenceParameters] = None
) -> DatasetEntity:
logger.info('infer()')
dump_features = True
dump_saliency_map = not inference_parameters.is_evaluation if inference_parameters else True

if inference_parameters is not None:
update_progress_callback = inference_parameters.update_progress
Expand All @@ -84,15 +87,13 @@ def infer(self,
stage_module = 'SegInferrer'
self._data_cfg = self._init_test_data_cfg(dataset)
self._label_dictionary = dict(enumerate(self._labels, 1))
results = self._run_task(stage_module, mode='train', dataset=dataset)
results = self._run_task(stage_module, mode='train', dataset=dataset, dump_features=dump_features,
dump_saliency_map=dump_saliency_map)
logger.debug(f'result of run_task {stage_module} module = {results}')
predictions = results['outputs']
# TODO: feature maps should be came from the inference results
featuremaps = [None for _ in range(len(predictions))]
for i in range(len(dataset)):
result, featuremap, dataset_item = predictions[i], featuremaps[i], dataset[i]
self._add_predictions_to_dataset_item(result, featuremap, dataset_item,
save_mask_visualization=not is_evaluation)
prediction_results = zip(predictions['eval_predictions'], predictions['feature_vectors'],
predictions['saliency_maps'])
self._add_predictions_to_dataset(prediction_results, dataset, dump_saliency_map=not is_evaluation)
return dataset

def evaluate(self,
Expand Down Expand Up @@ -208,45 +209,33 @@ def _init_test_data_cfg(self, dataset: DatasetEntity):
)
return data_cfg

def _add_predictions_to_dataset_item(self, prediction, feature_vector, dataset_item, save_mask_visualization):
soft_prediction = np.transpose(prediction, axes=(1, 2, 0))
hard_prediction = create_hard_prediction_from_soft_prediction(
soft_prediction=soft_prediction,
soft_threshold=self._hyperparams.postprocessing.soft_threshold,
blur_strength=self._hyperparams.postprocessing.blur_strength,
)
annotations = create_annotation_from_segmentation_map(
hard_prediction=hard_prediction,
soft_prediction=soft_prediction,
label_map=self._label_dictionary,
)
dataset_item.append_annotations(annotations=annotations)

if feature_vector is not None:
active_score = TensorEntity(name="representation_vector", numpy=feature_vector)
dataset_item.append_metadata_item(active_score, model=self._task_environment.model)

if save_mask_visualization:
for label_index, label in self._label_dictionary.items():
if label_index == 0:
continue

if len(soft_prediction.shape) == 3:
current_label_soft_prediction = soft_prediction[:, :, label_index]
else:
current_label_soft_prediction = soft_prediction
min_soft_score = np.min(current_label_soft_prediction)
max_soft_score = np.max(current_label_soft_prediction)
factor = 255.0 / (max_soft_score - min_soft_score + 1e-12)
result_media_numpy = (factor * (current_label_soft_prediction - min_soft_score)).astype(np.uint8)

result_media = ResultMediaEntity(name=f'{label.name}',
type='Soft Prediction',
label=label,
annotation_scene=dataset_item.annotation_scene,
roi=dataset_item.roi,
numpy=result_media_numpy)
dataset_item.append_metadata_item(result_media, model=self._task_environment.model)
def _add_predictions_to_dataset(self, prediction_results, dataset, dump_saliency_map):
""" Loop over dataset again to assign predictions. Convert from MMSegmentation format to OTE format. """

for dataset_item, (prediction, feature_vector, saliency_map) in zip(dataset, prediction_results):
soft_prediction = np.transpose(prediction[0], axes=(1, 2, 0))
chuneuny-emily marked this conversation as resolved.
Show resolved Hide resolved
hard_prediction = create_hard_prediction_from_soft_prediction(
soft_prediction=soft_prediction,
soft_threshold=self._hyperparams.postprocessing.soft_threshold,
blur_strength=self._hyperparams.postprocessing.blur_strength,
)
annotations = create_annotation_from_segmentation_map(
hard_prediction=hard_prediction,
soft_prediction=soft_prediction,
label_map=self._label_dictionary,
)
dataset_item.append_annotations(annotations=annotations)

if feature_vector is not None:
active_score = TensorEntity(name="representation_vector", numpy=feature_vector)
dataset_item.append_metadata_item(active_score, model=self._task_environment.model)

if dump_saliency_map and saliency_map is not None:
saliency_map = get_actmap(saliency_map, (dataset_item.width, dataset_item.height) )
saliency_map_media = ResultMediaEntity(name="saliency_map", type="Saliency map",
annotation_scene=dataset_item.annotation_scene,
numpy=saliency_map, roi=dataset_item.roi)
dataset_item.append_metadata_item(saliency_map_media, model=self._task_environment.model)

@staticmethod
def _patch_datasets(config: MPAConfig, domain=Domain.SEGMENTATION):
Expand Down