Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[tune] Update Lightning examples to support PTL 1.5 #20562

Merged
merged 6 commits into from
Feb 12, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions python/ray/tune/examples/mnist_ptl_mini.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import torch
from filelock import FileLock
from torch.nn import functional as F
from torchmetrics import Accuracy
import pytorch_lightning as pl
from pl_bolts.datamodules.mnist_datamodule import MNISTDataModule
import os
Expand All @@ -24,7 +25,7 @@ def __init__(self, config, data_dir=None):
self.layer_1 = torch.nn.Linear(28 * 28, layer_1)
self.layer_2 = torch.nn.Linear(layer_1, layer_2)
self.layer_3 = torch.nn.Linear(layer_2, 10)
self.accuracy = pl.metrics.Accuracy()
self.accuracy = Accuracy()

def forward(self, x):
batch_size, channels, width, height = x.size()
Expand Down Expand Up @@ -75,7 +76,7 @@ def train_mnist_tune(config, num_epochs=10, num_gpus=0):
max_epochs=num_epochs,
# If fractional GPUs passed in, convert to int.
gpus=math.ceil(num_gpus),
progress_bar_refresh_rate=0,
enable_progress_bar=False,
callbacks=[TuneReportCallback(metrics, on="validation_end")],
)
trainer.fit(model, dm)
Expand Down
6 changes: 3 additions & 3 deletions python/ray/tune/examples/mnist_pytorch_lightning.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ def configure_optimizers(self):

def train_mnist(config):
model = LightningMNISTClassifier(config)
trainer = pl.Trainer(max_epochs=10, show_progress_bar=False)
trainer = pl.Trainer(max_epochs=10, enable_progress_bar=False)

trainer.fit(model)
# __lightning_end__
Expand All @@ -148,7 +148,7 @@ def train_mnist_tune(config, num_epochs=10, num_gpus=0, data_dir="~/data"):
gpus=math.ceil(num_gpus),
logger=TensorBoardLogger(
save_dir=tune.get_trial_dir(), name="", version="."),
progress_bar_refresh_rate=0,
enable_progress_bar=False,
callbacks=[
TuneReportCallback(
{
Expand All @@ -174,7 +174,7 @@ def train_mnist_tune_checkpoint(config,
"gpus": math.ceil(num_gpus),
"logger": TensorBoardLogger(
save_dir=tune.get_trial_dir(), name="", version="."),
"progress_bar_refresh_rate": 0,
"enable_progress_bar": False,
"callbacks": [
TuneReportCheckpointCallback(
metrics={
Expand Down
4 changes: 2 additions & 2 deletions python/ray/util/ray_lightning/simple_tune.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
import pytorch_lightning as pl

from ray.util.ray_lightning import RayPlugin
from ray.util.ray_lightning.tune import TuneReportCallback, get_tune_ddp_resources
from ray.util.ray_lightning.tune import TuneReportCallback, get_tune_resources

num_cpus_per_actor = 1
num_workers = 1
Expand Down Expand Up @@ -70,7 +70,7 @@ def main():
num_samples=1,
metric="loss",
mode="min",
resources_per_trial=get_tune_ddp_resources(
resources_per_trial=get_tune_resources(
num_workers=num_workers, cpus_per_worker=num_cpus_per_actor
),
)
Expand Down
6 changes: 3 additions & 3 deletions python/ray/util/ray_lightning/tune/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,13 @@

TuneReportCallback = None
TuneReportCheckpointCallback = None
get_tune_ddp_resources = None
get_tune_resources = None

try:
from ray_lightning.tune import (
TuneReportCallback,
TuneReportCheckpointCallback,
get_tune_ddp_resources,
get_tune_resources,
)
except ImportError:
logger.info(
Expand All @@ -22,5 +22,5 @@
__all__ = [
"TuneReportCallback",
"TuneReportCheckpointCallback",
"get_tune_ddp_resources",
"get_tune_resources",
]
2 changes: 1 addition & 1 deletion python/requirements/ml/requirements_tune.txt
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ nevergrad==0.4.3.post7
optuna==2.9.1
pytest-remotedata==0.3.2
lightning-bolts==0.4.0
pytorch-lightning==1.4.9
pytorch-lightning==1.5.10
shortuuid==1.0.1
scikit-learn==0.24.2
scikit-optimize==0.8.1
Expand Down
2 changes: 1 addition & 1 deletion python/requirements/ml/requirements_upstream.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# Because they depend on Ray, we can't pin the subdependencies.
# So we separate its own requirements file.

ray_lightning==0.1.1
ray_lightning==0.2.0
tune-sklearn==0.4.1
xgboost_ray==0.1.4
lightgbm_ray==0.0.2
Expand Down