Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

C++ refactoring: ak.full_like, ak.zeros_like, ak.ones_like #1293

Merged
merged 9 commits into from
Feb 18, 2022
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
325 changes: 161 additions & 164 deletions src/awkward/_v2/operations/structure/ak_full_like.py
Original file line number Diff line number Diff line change
@@ -1,173 +1,170 @@
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE


from awkward._v2.operations.structure.ak_zeros_like import _ZEROS
import awkward as ak

np = ak.nplike.NumpyMetadata.instance()


# @ak._v2._connect.numpy.implements("full_like")
def full_like(array, fill_value, highlevel=True, behavior=None, dtype=None):
raise NotImplementedError


# """
# Args:
# array: Array to use as a model for a replacement that contains only
# `fill_value`.
# fill_value: Value to fill new new array with.
# highlevel (bool, default is True): If True, return an #ak.Array;
# otherwise, return a low-level #ak.layout.Content subclass.
# behavior (None or dict): Custom #ak.behavior for the output array, if
# high-level.
# dtype (None or type): Overrides the data type of the result.

# This is the equivalent of NumPy's `np.full_like` for Awkward Arrays.

# Although it's possible to produce an array of `fill_value` with the structure
# of an `array` using #ak.broadcast_arrays:

# >>> array = ak.Array([[1, 2, 3], [], [4, 5]])
# >>> ak.broadcast_arrays(array, 1)
# [<Array [[1, 2, 3], [], [4, 5]] type='3 * var * int64'>,
# <Array [[1, 1, 1], [], [1, 1]] type='3 * var * int64'>]
# >>> ak.broadcast_arrays(array, 1.0)
# [<Array [[1, 2, 3], [], [4, 5]] type='3 * var * int64'>,
# <Array [[1, 1, 1], [], [1, 1]] type='3 * var * float64'>]

# Such a technique takes its type from the scalar (`1` or `1.0`), rather than
# the array. This function gets all types from the array, which might not be
# the same in all parts of the structure.

# Here is an extreme example:

# >>> array = ak.Array([
# ... [{"x": 0.0, "y": []},
# ... {"x": 1.1, "y": [1]},
# ... {"x": 2.2, "y": [1, 2]}],
# ... [],
# ... [{"x": 3.3, "y": [1, 2, None, 3]},
# ... False,
# ... False,
# ... True,
# ... {"x": 4.4, "y": [1, 2, None, 3, 4]}]])
# >>> ak.to_list(ak.full_like(array, 12.3))
# [[{"x": 12.3, "y": []},
# {"x": 12.3, "y": [12]},
# {"x": 12.3, "y": [12, 12]}],
# [],
# [{"x": 12.3, "y": [12, 12, None, 12]},
# True,
# True,
# True,
# {"x": 12.3, "y": [12, 12, None, 12, 12]}]]

# The `"x"` values get filled in with `12.3` because they retain their type
# (`float64`) and the `"y"` list items get filled in with `12` because they
# retain their type (`int64`). Booleans get filled with True because `12.3`
# is not zero. Missing values remain in the same positions as in the original
# `array`. (To fill them in, use #ak.fill_none.)

# See also #ak.zeros_like and #ak.ones_like.

# (There is no equivalent of NumPy's `np.empty_like` because Awkward Arrays
# are immutable.)
# """
# if dtype is not None:
# # In the case of strings and byte strings,
# # converting the fill avoids a ValueError.
# fill_value = dtype(fill_value)
# # Also, if the fill_value cannot be converted to the dtype
# # this should throw a clear, early, error.
# if dtype is bool:
# # then for bools, only 0 and 1 give correct string behavior
# fill_value = int(fill_value)

# layout = ak._v2.operations.convert.to_layout(
# array, allow_record=True, allow_other=False
# )

# def getfunction(layout):
# if layout.parameter("__array__") == "bytestring" and fill_value is _ZEROS:
# nplike = ak.nplike.of(layout)
# asbytes = nplike.frombuffer(b"", dtype=np.uint8)
# return lambda: ak._v2.contents.ListArray64(
# ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
# ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
# ak._v2.contents.NumpyArray(asbytes, parameters={"__array__": "byte"}),
# parameters={"__array__": "bytestring"},
# )

# elif layout.parameter("__array__") == "bytestring":
# nplike = ak.nplike.of(layout)
# if isinstance(fill_value, bytes):
# asbytes = fill_value
# elif isinstance(fill_value, str) or (
# ak._v2._util.py27 and isinstance(fill_value, ak._v2._util.unicode)
# ):
# asbytes = fill_value.encode("utf-8", "surrogateescape")
# else:
# asbytes = str(fill_value).encode("utf-8", "surrogateescape")
# asbytes = nplike.frombuffer(asbytes, dtype=np.uint8)

# return lambda: ak._v2.contents.ListArray64(
# ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
# ak._v2.index.Index64(
# nplike.full(len(layout), len(asbytes), dtype=np.int64)
# ),
# ak._v2.contents.NumpyArray(asbytes, parameters={"__array__": "byte"}),
# parameters={"__array__": "bytestring"},
# )

# elif layout.parameter("__array__") == "string" and fill_value is _ZEROS:
# nplike = ak.nplike.of(layout)
# asbytes = nplike.frombuffer(b"", dtype=np.uint8)
# return lambda: ak._v2.contents.ListArray64(
# ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
# ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
# ak._v2.contents.NumpyArray(asbytes, parameters={"__array__": "char"}),
# parameters={"__array__": "string"},
# )

# elif layout.parameter("__array__") == "string":
# nplike = ak.nplike.of(layout)
# asstr = str(fill_value).encode("utf-8", "surrogateescape")
# asbytes = nplike.frombuffer(asstr, dtype=np.uint8)
# return lambda: ak._v2.contents.ListArray64(
# ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
# ak._v2.index.Index64(
# nplike.full(len(layout), len(asbytes), dtype=np.int64)
# ),
# ak._v2.contents.NumpyArray(asbytes, parameters={"__array__": "char"}),
# parameters={"__array__": "string"},
# )

# elif isinstance(layout, ak._v2.contents.NumpyArray):
# nplike = ak.nplike.of(layout)
# original = nplike.asarray(layout)
# if fill_value == 0 or fill_value is _ZEROS:
# return lambda: ak._v2.contents.NumpyArray(
# nplike.zeros_like(original),
# layout.identities,
# layout.parameters,
# )
# elif fill_value == 1:
# return lambda: ak._v2.contents.NumpyArray(
# nplike.ones_like(original),
# layout.identities,
# layout.parameters,
# )
# else:
# return lambda: ak._v2.contents.NumpyArray(
# nplike.full_like(original, fill_value),
# layout.identities,
# layout.parameters,
# )
# else:
# return None

# out = ak._v2._util.recursively_apply(layout, getfunction, pass_depth=False)
# if dtype is not None:
# out = strings_astype(out, dtype)
# out = values_astype(out, dtype)
# return ak._v2._util.maybe_wrap_like(out, array, behavior, highlevel)

"""
Args:
array: Array to use as a model for a replacement that contains only
`fill_value`.
fill_value: Value to fill new new array with.
highlevel (bool, default is True): If True, return an #ak.Array;
otherwise, return a low-level #ak.layout.Content subclass.
behavior (None or dict): Custom #ak.behavior for the output array, if
high-level.
dtype (None or NumPy dtype)): Overrides the data type of the result.

This is the equivalent of NumPy's `np.full_like` for Awkward Arrays.

Although it's possible to produce an array of `fill_value` with the structure
of an `array` using #ak.broadcast_arrays:

>>> array = ak.Array([[1, 2, 3], [], [4, 5]])
>>> ak.broadcast_arrays(array, 1)
[<Array [[1, 2, 3], [], [4, 5]] type='3 * var * int64'>,
<Array [[1, 1, 1], [], [1, 1]] type='3 * var * int64'>]
>>> ak.broadcast_arrays(array, 1.0)
[<Array [[1, 2, 3], [], [4, 5]] type='3 * var * int64'>,
<Array [[1, 1, 1], [], [1, 1]] type='3 * var * float64'>]

Such a technique takes its type from the scalar (`1` or `1.0`), rather than
the array. This function gets all types from the array, which might not be
the same in all parts of the structure.

Here is an extreme example:

>>> array = ak.Array([
... [{"x": 0.0, "y": []},
... {"x": 1.1, "y": [1]},
... {"x": 2.2, "y": [1, 2]}],
... [],
... [{"x": 3.3, "y": [1, 2, None, 3]},
... False,
... False,
... True,
... {"x": 4.4, "y": [1, 2, None, 3, 4]}]])
>>> ak.to_list(ak.full_like(array, 12.3))
[[{"x": 12.3, "y": []},
{"x": 12.3, "y": [12]},
{"x": 12.3, "y": [12, 12]}],
[],
[{"x": 12.3, "y": [12, 12, None, 12]},
True,
True,
True,
{"x": 12.3, "y": [12, 12, None, 12, 12]}]]

The `"x"` values get filled in with `12.3` because they retain their type
(`float64`) and the `"y"` list items get filled in with `12` because they
retain their type (`int64`). Booleans get filled with True because `12.3`
is not zero. Missing values remain in the same positions as in the original
`array`. (To fill them in, use #ak.fill_none.)

See also #ak.zeros_like and #ak.ones_like.

(There is no equivalent of NumPy's `np.empty_like` because Awkward Arrays
are immutable.)
"""
if dtype is not None:
# In the case of strings and byte strings,
# converting the fill avoids a ValueError.
dtype = np.dtype(dtype)
fill_value = dtype.type(fill_value)
# Also, if the fill_value cannot be converted to the dtype
# this should throw a clear, early, error.
if dtype == np.dtype(np.bool_):
# then for bools, only 0 and 1 give correct string behavior
fill_value = fill_value.view(np.uint8)

layout = ak._v2.operations.convert.to_layout(
array, allow_record=True, allow_other=False
)

def action(layout, **kwargs):
if layout.parameter("__array__") == "bytestring" and fill_value is _ZEROS:
nplike = ak.nplike.of(layout)
asbytes = nplike.frombuffer(b"", dtype=np.uint8)
return ak._v2.contents.ListArray(
ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
ak._v2.contents.NumpyArray(asbytes, parameters={"__array__": "byte"}),
parameters={"__array__": "bytestring"},
)

elif layout.parameter("__array__") == "bytestring":
nplike = ak.nplike.of(layout)
if isinstance(fill_value, bytes):
asbytes = fill_value
else:
asbytes = str(fill_value).encode("utf-8", "surrogateescape")
asbytes = nplike.frombuffer(asbytes, dtype=np.uint8)

return ak._v2.contents.ListArray(
ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
ak._v2.index.Index64(
nplike.full(len(layout), len(asbytes), dtype=np.int64)
),
ak._v2.contents.NumpyArray(asbytes, parameters={"__array__": "byte"}),
parameters={"__array__": "bytestring"},
)

elif layout.parameter("__array__") == "string" and fill_value is _ZEROS:
nplike = ak.nplike.of(layout)
asbytes = nplike.frombuffer(b"", dtype=np.uint8)
return ak._v2.contents.ListArray(
ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
ak._v2.contents.NumpyArray(asbytes, parameters={"__array__": "char"}),
parameters={"__array__": "string"},
)

elif layout.parameter("__array__") == "string":
nplike = ak.nplike.of(layout)
asstr = str(fill_value).encode("utf-8", "surrogateescape")
asbytes = nplike.frombuffer(asstr, dtype=np.uint8)
return ak._v2.contents.ListArray(
ak._v2.index.Index64(nplike.zeros(len(layout), dtype=np.int64)),
ak._v2.index.Index64(
nplike.full(len(layout), len(asbytes), dtype=np.int64)
),
ak._v2.contents.NumpyArray(asbytes, parameters={"__array__": "char"}),
parameters={"__array__": "string"},
)

elif isinstance(layout, ak._v2.contents.NumpyArray):
nplike = ak.nplike.of(layout)
original = nplike.asarray(layout)

if fill_value == 0 or fill_value is _ZEROS:
return ak._v2.contents.NumpyArray(
nplike.zeros_like(original),
layout.identifier,
layout.parameters,
)
elif fill_value == 1:
return ak._v2.contents.NumpyArray(
nplike.ones_like(original),
layout.identifier,
layout.parameters,
)
else:
return ak._v2.contents.NumpyArray(
nplike.full_like(original, fill_value),
layout.identifier,
layout.parameters,
)
else:
return None

out = layout.recursively_apply(action)
if dtype is not None:
out = ak._v2.operations.structure.strings_astype(out, dtype)
out = ak._v2.operations.structure.values_astype(out, dtype)
return out
return ak._v2._util.wrap(out, behavior, highlevel)
38 changes: 19 additions & 19 deletions src/awkward/_v2/operations/structure/ak_ones_like.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,23 +8,23 @@

# @ak._v2._connect.numpy.implements("ones_like")
def ones_like(array, highlevel=True, behavior=None, dtype=None):
raise NotImplementedError


# """
# Args:
# array: Array to use as a model for a replacement that contains only `1`.
# highlevel (bool, default is True): If True, return an #ak.Array;
# otherwise, return a low-level #ak.layout.Content subclass.
# behavior (None or dict): Custom #ak.behavior for the output array, if
# high-level.
# dtype (None or type): Overrides the data type of the result.

# This is the equivalent of NumPy's `np.ones_like` for Awkward Arrays.

# See #ak.full_like for details, and see also #ak.zeros_like.

# (There is no equivalent of NumPy's `np.empty_like` because Awkward Arrays
# are immutable.)
# """
# return full_like(array, 1, highlevel=highlevel, behavior=behavior, dtype=dtype)
"""
Args:
array: Array to use as a model for a replacement that contains only `1`.
highlevel (bool, default is True): If True, return an #ak.Array;
otherwise, return a low-level #ak.layout.Content subclass.
behavior (None or dict): Custom #ak.behavior for the output array, if
high-level.
dtype (None or NumPy dtype): Overrides the data type of the result.

This is the equivalent of NumPy's `np.ones_like` for Awkward Arrays.

See #ak.full_like for details, and see also #ak.zeros_like.

(There is no equivalent of NumPy's `np.empty_like` because Awkward Arrays
are immutable.)
"""
return ak._v2.operations.structure.full_like(
array, 1, highlevel=highlevel, behavior=behavior, dtype=dtype
)
Loading