Skip to content
This repository has been archived by the owner on Nov 21, 2022. It is now read-only.

Mounts don't work with latest kernel (v55) #12

Closed
catthehacker opened this issue Feb 17, 2021 · 7 comments
Closed

Mounts don't work with latest kernel (v55) #12

catthehacker opened this issue Feb 17, 2021 · 7 comments

Comments

@catthehacker
Copy link

catthehacker commented Feb 17, 2021

Mounted drives from Windows doesn't seem to work with newest kernel (https://github.com/nathanchance/WSL2-Linux-Kernel/releases/tag/wsl2-cbl-kernel-next-20210217-v55)

dmesg
cat@alpine ~ [0|1]> dmesg
[    0.000000] Linux version 5.11.0-next-20210217-microsoft-cbl (nathan@debian-m3-large-x86) (ClangBuiltLinux clang version 13.0.0 (https://github.com/llvm/llvm-project 4c3f1be84f76ef31f767d3d271ee8bdcd2be5a02), LLD 13.0.0 (https://github.com/llvm/llvm-project 4c3f1be84f76ef31f767d3d271ee8bdcd2be5a02)) #1 SMP Wed Feb 17 14:56:14 MST 2021
[    0.000000] Kernel is locked down from Kernel configuration; see man kernel_lockdown.7
[    0.000000] Command line: initrd=\initrd.img panic=-1 nr_cpus=12 swiotlb=force pty.legacy_count=0 noibrs noibpb nopti nospectre_v2 nospectre_v1 l1tf=off nospec_store_bypass_disable no_stf_barrier mds=off tsx=on tsx_async_abort=off mitigations=off
[    0.000000] KERNEL supported cpus:
[    0.000000]   Centaur CentaurHauls
[    0.000000]   Intel GenuineIntel
[    0.000000]   AMD AuthenticAMD
[    0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'
[    0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
[    0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
[    0.000000] x86/fpu: xstate_offset[2]:  576, xstate_sizes[2]:  256
[    0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using 'compacted' format.
[    0.000000] BIOS-provided physical RAM map:
[    0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009ffff] usable
[    0.000000] BIOS-e820: [mem 0x00000000000e0000-0x00000000000e0fff] reserved
[    0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000001fffff] ACPI data
[    0.000000] BIOS-e820: [mem 0x0000000000200000-0x00000000f7ffffff] usable
[    0.000000] BIOS-e820: [mem 0x0000000100000000-0x0000000307ffffff] usable
[    0.000000] NX (Execute Disable) protection: active
[    0.000000] DMI not present or invalid.
[    0.000000] Hypervisor detected: Microsoft Hyper-V
[    0.000000] Hyper-V: privilege flags low:0xae7f, high:0x3b8030, hints:0x2c2c, misc:0xc0bed7b2
[    0.000000] Hyper-V Host Build:21301-10.0-1-0.1010
[    0.000000] Hyper-V: LAPIC Timer Frequency: 0x1e8480
[    0.000000] Hyper-V: Using hypercall for remote TLB flush
[    0.000000] clocksource: hyperv_clocksource_tsc_page: mask: 0xffffffffffffffff max_cycles: 0x24e6a1710, max_idle_ns: 440795202120 ns
[    0.000002] tsc: Detected 3493.479 MHz processor
[    0.000009] e820: update [mem 0x00000000-0x00000fff] usable ==> reserved
[    0.000012] e820: remove [mem 0x000a0000-0x000fffff] usable
[    0.000014] last_pfn = 0x308000 max_arch_pfn = 0x400000000
[    0.000041] Disabled
[    0.000042] x86/PAT: MTRRs disabled, skipping PAT initialization too.
[    0.000050] CPU MTRRs all blank - virtualized system.
[    0.000051] x86/PAT: Configuration [0-7]: WB  WT  UC- UC  WB  WT  UC- UC
[    0.000054] last_pfn = 0xf8000 max_arch_pfn = 0x400000000
[    0.000070] Using GB pages for direct mapping
[    0.000419] RAMDISK: [mem 0x03616000-0x03624fff]
[    0.000424] ACPI: Early table checksum verification disabled
[    0.000427] ACPI: RSDP 0x00000000000E0000 000024 (v02 VRTUAL)
[    0.000431] ACPI: XSDT 0x0000000000100000 000044 (v01 VRTUAL MICROSFT 00000001 MSFT 00000001)
[    0.000436] ACPI: FACP 0x0000000000101000 000114 (v06 VRTUAL MICROSFT 00000001 MSFT 00000001)
[    0.000440] ACPI: DSDT 0x00000000001011B8 01E184 (v02 MSFTVM DSDT01   00000001 MSFT 05000000)
[    0.000442] ACPI: FACS 0x0000000000101114 000040
[    0.000444] ACPI: OEM0 0x0000000000101154 000064 (v01 VRTUAL MICROSFT 00000001 MSFT 00000001)
[    0.000446] ACPI: SRAT 0x000000000011F33C 000370 (v02 VRTUAL MICROSFT 00000001 MSFT 00000001)
[    0.000449] ACPI: APIC 0x000000000011F6AC 0000A8 (v04 VRTUAL MICROSFT 00000001 MSFT 00000001)
[    0.000453] ACPI: Local APIC address 0xfee00000
[    0.000479] Zone ranges:
[    0.000480]   DMA      [mem 0x0000000000000000-0x0000000000ffffff]
[    0.000482]   DMA32    [mem 0x0000000001000000-0x00000000ffffffff]
[    0.000483]   Normal   [mem 0x0000000100000000-0x0000000307ffffff]
[    0.000484] Movable zone start for each node
[    0.000485] Early memory node ranges
[    0.000485]   node   0: [mem 0x0000000000001000-0x000000000009ffff]
[    0.000487]   node   0: [mem 0x0000000000200000-0x00000000f7ffffff]
[    0.000488]   node   0: [mem 0x0000000100000000-0x0000000307ffffff]
[    0.000490] Initmem setup node 0 [mem 0x0000000000000000-0x0000000307ffffff]
[    0.000492] On node 0 totalpages: 3145375
[    0.000493]   DMA zone: 59 pages used for memmap
[    0.000494]   DMA zone: 22 pages reserved
[    0.000494]   DMA zone: 3743 pages, LIFO batch:0
[    0.000744]   DMA zone: 353 pages in unavailable ranges
[    0.000746]   DMA32 zone: 16320 pages used for memmap
[    0.000747]   DMA32 zone: 1011712 pages, LIFO batch:63
[    0.019382]   Normal zone: 33280 pages used for memmap
[    0.019391]   Normal zone: 2129920 pages, LIFO batch:63
[    0.020055] ACPI: Local APIC address 0xfee00000
[    0.020064] ACPI: LAPIC_NMI (acpi_id[0x01] dfl dfl lint[0x1])
[    0.020471] IOAPIC[0]: apic_id 12, version 17, address 0xfec00000, GSI 0-23
[    0.020484] ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level)
[    0.020487] ACPI: IRQ9 used by override.
[    0.020489] Using ACPI (MADT) for SMP configuration information
[    0.020498] smpboot: Allowing 12 CPUs, 0 hotplug CPUs
[    0.020507] [mem 0xf8000000-0xffffffff] available for PCI devices
[    0.020509] Booting paravirtualized kernel on Hyper-V
[    0.020511] clocksource: refined-jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 19112604462750000 ns
[    0.027299] setup_percpu: NR_CPUS:256 nr_cpumask_bits:256 nr_cpu_ids:12 nr_node_ids:1
[    0.028541] percpu: Embedded 42 pages/cpu s139288 r0 d32744 u262144
[    0.028549] pcpu-alloc: s139288 r0 d32744 u262144 alloc=1*2097152
[    0.028552] pcpu-alloc: [0] 00 01 02 03 04 05 06 07 [0] 08 09 10 11 -- -- -- --
[    0.028567] Built 1 zonelists, mobility grouping on.  Total pages: 3095694
[    0.028570] Kernel command line: initrd=\initrd.img panic=-1 nr_cpus=12 swiotlb=force pty.legacy_count=0 noibrs noibpb nopti nospectre_v2 nospectre_v1 l1tf=off nospec_store_bypass_disable no_stf_barrier mds=off tsx=on tsx_async_abort=off mitigations=off
[    0.032083] Dentry cache hash table entries: 2097152 (order: 12, 16777216 bytes, linear)
[    0.033712] Inode-cache hash table entries: 1048576 (order: 11, 8388608 bytes, linear)
[    0.033770] mem auto-init: stack:all(zero), heap alloc:off, heap free:off
[    0.059884] Memory: 4092084K/12581500K available (20486K kernel code, 999K rwdata, 3688K rodata, 996K init, 980K bss, 324192K reserved, 0K cma-reserved)
[    0.059896] random: get_random_u64 called from __kmem_cache_create+0x22/0x540 with crng_init=0
[    0.060017] SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=12, Nodes=1
[    0.060324] rcu: Hierarchical RCU implementation.
[    0.060326] rcu:     RCU restricting CPUs from NR_CPUS=256 to nr_cpu_ids=12.
[    0.060328]  All grace periods are expedited (rcu_expedited).
[    0.060328]  Tracing variant of Tasks RCU enabled.
[    0.060329] rcu: RCU calculated value of scheduler-enlistment delay is 10 jiffies.
[    0.060330] rcu: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=12
[    0.060340] Using NULL legacy PIC
[    0.060340] NR_IRQS: 16640, nr_irqs: 520, preallocated irqs: 0
[    0.060858] random: crng done (trusting CPU's manufacturer)
[    0.060898] printk: console [ttyS0] enabled
[    0.060903] ACPI: Core revision 20210105
[    0.061055] Failed to register legacy timer interrupt
[    0.061056] APIC: Switch to symmetric I/O mode setup
[    0.061058] Switched APIC routing to physical flat.
[    0.061079] Hyper-V: Using IPI hypercalls
[    0.061081] Hyper-V: Using enlightened APIC (xapic mode)
[    0.061191] clocksource: tsc-early: mask: 0xffffffffffffffff max_cycles: 0x325b409ffd1, max_idle_ns: 440795235573 ns
[    0.061195] Calibrating delay loop (skipped), value calculated using timer frequency.. 6986.95 BogoMIPS (lpj=34934790)
[    0.061198] pid_max: default: 32768 minimum: 301
[    0.061222] LSM: Security Framework initializing
[    0.061227] Yama: becoming mindful.
[    0.061231] LoadPin: ready to pin (currently enforcing)
[    0.061273] Mount-cache hash table entries: 32768 (order: 6, 262144 bytes, linear)
[    0.061308] Mountpoint-cache hash table entries: 32768 (order: 6, 262144 bytes, linear)
[    0.061574] Last level iTLB entries: 4KB 1024, 2MB 1024, 4MB 512
[    0.061576] Last level dTLB entries: 4KB 1536, 2MB 1536, 4MB 768, 1GB 0
[    0.061582] Speculative Store Bypass: Vulnerable
[    0.061765] Freeing SMP alternatives memory: 68K
[    0.061842] smpboot: CPU0: AMD Ryzen Threadripper 1920X 12-Core Processor (family: 0x17, model: 0x1, stepping: 0x1)
[    0.061926] Performance Events: PMU not available due to virtualization, using software events only.
[    0.061958] rcu: Hierarchical SRCU implementation.
[    0.062064] smp: Bringing up secondary CPUs ...
[    0.062116] x86: Booting SMP configuration:
[    0.062117] .... node  #0, CPUs:        #1  #2  #3  #4  #5  #6  #7  #8  #9 #10 #11
[    0.072215] smp: Brought up 1 node, 12 CPUs
[    0.072215] smpboot: Max logical packages: 1
[    0.072215] smpboot: Total of 12 processors activated (83843.49 BogoMIPS)
[    0.084715] node 0 deferred pages initialised in 10ms
[    0.086044] devtmpfs: initialized
[    0.086044] clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 19112604462750000 ns
[    0.086044] futex hash table entries: 4096 (order: 6, 262144 bytes, linear)
[    0.086044] NET: Registered protocol family 16
[    0.091259] ACPI: bus type PCI registered
[    0.091291] PCI: Fatal: No config space access function found
[    0.092927] HugeTLB registered 2.00 MiB page size, pre-allocated 0 pages
[    0.101250] raid6: skip pq benchmark and using algorithm avx2x4
[    0.101250] raid6: using avx2x2 recovery algorithm
[    0.101261] ACPI: Added _OSI(Module Device)
[    0.101262] ACPI: Added _OSI(Processor Device)
[    0.101263] ACPI: Added _OSI(3.0 _SCP Extensions)
[    0.101264] ACPI: Added _OSI(Processor Aggregator Device)
[    0.101265] ACPI: Added _OSI(Linux-Dell-Video)
[    0.101266] ACPI: Added _OSI(Linux-Lenovo-NV-HDMI-Audio)
[    0.101268] ACPI: Added _OSI(Linux-HPI-Hybrid-Graphics)
[    0.108319] ACPI: 1 ACPI AML tables successfully acquired and loaded
[    0.109360] ACPI: Interpreter enabled
[    0.109364] ACPI: (supports S0 S5)
[    0.109366] ACPI: Using IOAPIC for interrupt routing
[    0.109378] PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug
[    0.109504] ACPI: Enabled 1 GPEs in block 00 to 0F
[    0.110423] iommu: Default domain type: Translated
[    0.110511] SCSI subsystem initialized
[    0.111252] hv_vmbus: Vmbus version:5.2
[    0.111378] PCI: Using ACPI for IRQ routing
[    0.111380] PCI: System does not support PCI
[    0.111590] clocksource: Switched to clocksource tsc-early
[    0.111750] hv_vmbus: Unknown GUID: c376c1c3-d276-48d2-90a9-c04748072c60
[    0.111750] hv_vmbus: Unknown GUID: 6e382d18-3336-4f4b-acc4-2b7703d4df4a
[    0.111750] hv_vmbus: Unknown GUID: dde9cbc0-5060-4436-9448-ea1254a5d177
[    0.111590] VFS: Disk quotas dquot_6.6.0
[    0.111590] VFS: Dquot-cache hash table entries: 512 (order 0, 4096 bytes)
[    0.111590] FS-Cache: Loaded
[    0.111590] pnp: PnP ACPI init
[    0.111590] pnp 00:00: Plug and Play ACPI device, IDs PNP0b00 (active)
[    0.111590] pnp: PnP ACPI: found 1 devices
[    0.112311] NET: Registered protocol family 2
[    0.112563] tcp_listen_portaddr_hash hash table entries: 8192 (order: 5, 131072 bytes, linear)
[    0.112583] TCP established hash table entries: 131072 (order: 8, 1048576 bytes, linear)
[    0.112969] TCP bind hash table entries: 65536 (order: 8, 1048576 bytes, linear)
[    0.113069] TCP: Hash tables configured (established 131072 bind 65536)
[    0.113104] UDP hash table entries: 8192 (order: 6, 262144 bytes, linear)
[    0.113376] UDP-Lite hash table entries: 8192 (order: 6, 262144 bytes, linear)
[    0.113453] NET: Registered protocol family 1
[    0.113992] RPC: Registered named UNIX socket transport module.
[    0.113995] RPC: Registered udp transport module.
[    0.113996] RPC: Registered tcp transport module.
[    0.113997] RPC: Registered tcp NFSv4.1 backchannel transport module.
[    0.114001] PCI: CLS 0 bytes, default 64
[    0.114051] Trying to unpack rootfs image as initramfs...
[    0.114264] Freeing initrd memory: 60K
[    0.114269] PCI-DMA: Using software bounce buffering for IO (SWIOTLB)
[    0.114270] software IO TLB: mapped [mem 0x00000000f4000000-0x00000000f8000000] (64MB)
[    0.115650] kvm: no hardware support
[    0.116361] kvm: Nested Virtualization enabled
[    0.116373] SVM: kvm: Nested Paging enabled
[    0.116374] SVM: Virtual VMLOAD VMSAVE supported
[    0.269521] Initialise system trusted keyrings
[    0.269701] workingset: timestamp_bits=46 max_order=22 bucket_order=0
[    0.271666] squashfs: version 4.0 (2009/01/31) Phillip Lougher
[    0.272062] NFS: Registering the id_resolver key type
[    0.272072] Key type id_resolver registered
[    0.272073] Key type id_legacy registered
[    0.272076] Installing knfsd (copyright (C) 1996 [email protected]).
[    0.273317] Key type cifs.idmap registered
[    0.273460] fuse: init (API version 7.33)
[    0.273741] SGI XFS with ACLs, security attributes, realtime, scrub, repair, quota, no debug enabled
[    0.274304] 9p: Installing v9fs 9p2000 file system support
[    0.274317] FS-Cache: Netfs '9p' registered for caching
[    0.274900] FS-Cache: Netfs 'ceph' registered for caching
[    0.274906] ceph: loaded (mds proto 32)
[    0.287064] NET: Registered protocol family 38
[    0.287070] xor: automatically using best checksumming function   avx
[    0.287075] Key type asymmetric registered
[    0.287077] Asymmetric key parser 'x509' registered
[    0.287106] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 250)
[    0.288167] hv_vmbus: registering driver hv_pci
[    0.288725] hv_pci fa367aa7-a161-4916-86b7-b340ad4695fa: PCI VMBus probing: Using version 0x10003
[    0.289859] hv_pci fa367aa7-a161-4916-86b7-b340ad4695fa: PCI host bridge to bus a161:00
[    0.290458] pci a161:00:00.0: [1414:008e] type 00 class 0x030200
[    0.297686] Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
[    0.298251] Non-volatile memory driver v1.3
[    0.303407] brd: module loaded
[    0.304973] loop: module loaded
[    0.305045] hv_vmbus: registering driver hv_storvsc
[    0.305182] wireguard: WireGuard 1.0.0 loaded. See www.wireguard.com for information.
[    0.305184] wireguard: Copyright (C) 2015-2019 Jason A. Donenfeld <[email protected]>. All Rights Reserved.
[    0.305203] tun: Universal TUN/TAP device driver, 1.6
[    0.305352] PPP generic driver version 2.4.2
[    0.305468] PPP BSD Compression module registered
[    0.305470] PPP Deflate Compression module registered
[    0.305477] PPP MPPE Compression module registered
[    0.305478] NET: Registered protocol family 24
[    0.305484] hv_vmbus: registering driver hv_netvsc
[    0.305652] VFIO - User Level meta-driver version: 0.3
[    0.305965] hv_vmbus: registering driver hyperv_keyboard
[    0.306231] rtc_cmos 00:00: RTC can wake from S4
[    0.308469] scsi host0: storvsc_host_t
[    0.309480] rtc_cmos 00:00: registered as rtc0
[    0.310184] rtc_cmos 00:00: setting system clock to 2021-02-17T22:09:07 UTC (1613599747)
[    0.310205] rtc_cmos 00:00: alarms up to one month, 114 bytes nvram
[    0.310632] device-mapper: ioctl: 4.44.0-ioctl (2021-02-01) initialised: [email protected]
[    0.311010] device-mapper: raid: Loading target version 1.15.1
[    0.311178] hv_utils: Registering HyperV Utility Driver
[    0.311180] hv_vmbus: registering driver hv_utils
[    0.311318] hv_vmbus: registering driver hv_balloon
[    0.311319] hv_utils: cannot register PTP clock: 0
[    0.311358] dxgk:err: dxg_drv_init  Version: 2
[    0.311366] hv_vmbus: registering driver dxgkrnl
[    0.311398] Mirror/redirect action on
[    0.311928] hv_utils: TimeSync IC version 4.0
[    0.312521] hv_balloon: Using Dynamic Memory protocol version 2.0
[    0.312645] IPVS: Registered protocols (TCP, UDP)
[    0.312725] IPVS: Connection hash table configured (size=4096, memory=64Kbytes)
[    0.312774] IPVS: ipvs loaded.
[    0.312775] IPVS: [rr] scheduler registered.
[    0.312776] IPVS: [wrr] scheduler registered.
[    0.312777] IPVS: [sh] scheduler registered.
[    0.312848] ipip: IPv4 and MPLS over IPv4 tunneling driver
[    0.313251] Free page reporting enabled
[    0.313254] hv_balloon: Cold memory discard hint enabled
[    0.316434] ipt_CLUSTERIP: ClusterIP Version 0.8 loaded successfully
[    0.317094] Initializing XFRM netlink socket
[    0.317308] NET: Registered protocol family 10
[    0.317822] Segment Routing with IPv6
[    0.320383] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver
[    0.320638] NET: Registered protocol family 17
[    0.320676] Bridge firewalling registered
[    0.320690] 8021q: 802.1Q VLAN Support v1.8
[    0.320733] sctp: Hash tables configured (bind 256/256)
[    0.320833] 9pnet: Installing 9P2000 support
[    0.320857] Key type dns_resolver registered
[    0.320859] Key type ceph registered
[    0.321329] libceph: loaded (mon/osd proto 15/24)
[    0.321529] NET: Registered protocol family 40
[    0.321533] hv_vmbus: registering driver hv_sock
[    0.321585] IPI shorthand broadcast: enabled
[    0.321595] sched_clock: Marking stable (321049889, 438300)->(324008300, -2520111)
[    0.321981] registered taskstats version 1
[    0.321986] Loading compiled-in X.509 certificates
[    0.322008] Key type ._fscrypt registered
[    0.322009] Key type .fscrypt registered
[    0.322010] Key type fscrypt-provisioning registered
[    0.322466] Btrfs loaded, crc32c=crc32c-generic, zoned=no
[    0.323287] Freeing unused kernel image (initmem) memory: 996K
[    0.391368] Write protecting the kernel read-only data: 26624k
[    0.392198] Freeing unused kernel image (text/rodata gap) memory: 2040K
[    0.392541] Freeing unused kernel image (rodata/data gap) memory: 408K
[    0.403959] x86/mm: Checked W+X mappings: passed, no W+X pages found.
[    0.403970] Run /init as init process
[    0.403972]   with arguments:
[    0.403972]     /init
[    0.403973]     noibrs
[    0.403974]     noibpb
[    0.403974]     nopti
[    0.403975]     nospectre_v2
[    0.403975]     nospec_store_bypass_disable
[    0.403976]     no_stf_barrier
[    0.403976]   with environment:
[    0.403977]     HOME=/
[    0.403977]     TERM=linux
[    0.403978]     tsx=on
[    0.494061] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
[    0.716641] scsi 0:0:0:0: Direct-Access     Msft     Virtual Disk     1.0  PQ: 0 ANSI: 5
[    0.717306] sd 0:0:0:0: Attached scsi generic sg0 type 0
[    0.718649] sd 0:0:0:0: [sda] 536870912 512-byte logical blocks: (275 GB/256 GiB)
[    0.718654] sd 0:0:0:0: [sda] 4096-byte physical blocks
[    0.718866] sd 0:0:0:0: [sda] Write Protect is off
[    0.718869] sd 0:0:0:0: [sda] Mode Sense: 0f 00 00 00
[    0.719303] sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
[    0.793284] hv_pci 24c653e7-75fd-4744-b594-3bc3675477c8: PCI VMBus probing: Using version 0x10003
[    0.863173] hv_pci 24c653e7-75fd-4744-b594-3bc3675477c8: PCI host bridge to bus 75fd:00
[    0.863178] pci_bus 75fd:00: root bus resource [mem 0xe00000000-0xe00002fff window]
[    0.864545] pci 75fd:00:00.0: [1af4:1049] type 00 class 0x010000
[    0.865843] pci 75fd:00:00.0: reg 0x10: [mem 0xe00000000-0xe00000fff 64bit]
[    0.866721] pci 75fd:00:00.0: reg 0x18: [mem 0xe00001000-0xe00001fff 64bit]
[    0.867649] pci 75fd:00:00.0: reg 0x20: [mem 0xe00002000-0xe00002fff 64bit]
[    0.873240] pci 75fd:00:00.0: BAR 0: assigned [mem 0xe00000000-0xe00000fff 64bit]
[    0.873891] pci 75fd:00:00.0: BAR 2: assigned [mem 0xe00001000-0xe00001fff 64bit]
[    0.874521] pci 75fd:00:00.0: BAR 4: assigned [mem 0xe00002000-0xe00002fff 64bit]
[    1.181646] sd 0:0:0:0: [sda] Attached SCSI disk
[    1.187177] EXT4-fs (sda): mounted filesystem with ordered data mode. Opts: (null). Quota mode: none.
[    1.331289] clocksource: tsc: mask: 0xffffffffffffffff max_cycles: 0x325b409ffd1, max_idle_ns: 440795235573 ns
[    1.331564] clocksource: Switched to clocksource tsc
[    1.891773] Adding 8388608k swap on /swap/file.  Priority:-2 extents:4 across:8413184k
[    3.191484] scsi 0:0:0:1: Direct-Access     Msft     Virtual Disk     1.0  PQ: 0 ANSI: 5
[    3.191927] sd 0:0:0:1: Attached scsi generic sg1 type 0
[    3.192673] sd 0:0:0:1: [sdb] 536870912 512-byte logical blocks: (275 GB/256 GiB)
[    3.192677] sd 0:0:0:1: [sdb] 4096-byte physical blocks
[    3.192794] sd 0:0:0:1: [sdb] Write Protect is off
[    3.192797] sd 0:0:0:1: [sdb] Mode Sense: 0f 00 00 00
[    3.193004] sd 0:0:0:1: [sdb] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
[    3.194654] sd 0:0:0:1: [sdb] Attached SCSI disk
[    3.212965] EXT4-fs (sdb): mounted filesystem with ordered data mode. Opts: discard,errors=remount-ro,data=ordered. Quota mode: none.
[    3.232608] FS-Cache: Duplicate cookie detected
[    3.232610] FS-Cache: O-cookie c=0000000005d58650 [p=00000000447ba50b fl=222 nc=0 na=1]
[    3.232612] FS-Cache: O-cookie d=00000000c5800d43 n=0000000006ea213e
[    3.232613] FS-Cache: O-key=[10] '34323934393337363134'
[    3.232617] FS-Cache: N-cookie c=00000000f87434df [p=00000000447ba50b fl=2 nc=0 na=1]
[    3.232619] FS-Cache: N-cookie d=00000000c5800d43 n=000000003f355b9d
[    3.232619] FS-Cache: N-key=[10] '34323934393337363134'
[    3.232836] init: (1) ERROR: ConfigApplyWindowsLibPath:2329: open /etc/ld.so.conf.d/ld.wsl.conf
[    3.232839]  failed 2
[    3.233530] WARNING: hostname set to alpine in /etc/wsl.conf
[    3.242164] 9pnet_virtio: no channels available for device drvfs
[    3.242179] WARNING: mount: waiting for virtio device...
[    3.342310] 9pnet_virtio: no channels available for device drvfs
[    3.442522] 9pnet_virtio: no channels available for device drvfs
[    3.542691] 9pnet_virtio: no channels available for device drvfs
[    3.642854] 9pnet_virtio: no channels available for device drvfs
[    3.743077] 9pnet_virtio: no channels available for device drvfs
[    3.843281] 9pnet_virtio: no channels available for device drvfs
[    3.943454] 9pnet_virtio: no channels available for device drvfs
[    4.043640] 9pnet_virtio: no channels available for device drvfs
[    4.143801] 9pnet_virtio: no channels available for device drvfs
[    4.243984] 9pnet_virtio: no channels available for device drvfs
[    4.344233] 9pnet_virtio: no channels available for device drvfs
[    4.444437] 9pnet_virtio: no channels available for device drvfs
[    4.544599] 9pnet_virtio: no channels available for device drvfs
[    4.644809] 9pnet_virtio: no channels available for device drvfs
[    4.745000] 9pnet_virtio: no channels available for device drvfs
[    4.845184] 9pnet_virtio: no channels available for device drvfs
[    4.945345] 9pnet_virtio: no channels available for device drvfs
[    5.045562] 9pnet_virtio: no channels available for device drvfs
[    5.145721] 9pnet_virtio: no channels available for device drvfs
[    5.145735] init: (1) ERROR: MountPlan9WithRetry:285: mount drvfs on /mnt/c (cache=mmap,noatime,msize=262144,trans=virtio,aname=drvfs;path=C:\;uid=1000;gid=1000;symlinkroot=/mnt/
[    5.145737] ) failed: 2
[    5.146415] 9pnet_virtio: no channels available for device drvfs
[    5.146421] WARNING: mount: waiting for virtio device...
[    5.246586] 9pnet_virtio: no channels available for device drvfs
[    5.346758] 9pnet_virtio: no channels available for device drvfs
[    5.446924] 9pnet_virtio: no channels available for device drvfs
[    5.547085] 9pnet_virtio: no channels available for device drvfs
[    5.647261] 9pnet_virtio: no channels available for device drvfs
[    5.747413] 9pnet_virtio: no channels available for device drvfs
[    5.847576] 9pnet_virtio: no channels available for device drvfs
[    5.947736] 9pnet_virtio: no channels available for device drvfs
[    6.047886] 9pnet_virtio: no channels available for device drvfs
[    6.148063] 9pnet_virtio: no channels available for device drvfs
[    6.248271] 9pnet_virtio: no channels available for device drvfs
[    6.348438] 9pnet_virtio: no channels available for device drvfs
[    6.448609] 9pnet_virtio: no channels available for device drvfs
[    6.548771] 9pnet_virtio: no channels available for device drvfs
[    6.648939] 9pnet_virtio: no channels available for device drvfs
[    6.749092] 9pnet_virtio: no channels available for device drvfs
[    6.849261] 9pnet_virtio: no channels available for device drvfs
[    6.949404] 9pnet_virtio: no channels available for device drvfs
[    7.049571] 9pnet_virtio: no channels available for device drvfs
[    7.049585] init: (1) ERROR: MountPlan9WithRetry:285: mount drvfs on /mnt/r (cache=mmap,noatime,msize=262144,trans=virtio,aname=drvfs;path=R:\;uid=1000;gid=1000;symlinkroot=/mnt/
[    7.049587] ) failed: 2
[    7.061086] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\7-Zip

[    7.061332] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\Git LFS

[    7.061494] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\PuTTY\

[    7.061594] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\dotnet\

[    7.061672] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\OpenSSH\

[    7.061748] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\SysInternals\

[    7.061823] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\PowerShell\6\

[    7.061899] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\Standalone Binaries\

[    7.061974] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\DiscordChatExporter\

[    7.062049] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\PowerShell\7-preview\

[    7.062168] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\Microsoft VS Code\bin

[    7.062274] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\ImageMagick-7.0.9-Q16

[    7.062354] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\Microsoft VS Code Insiders\bin

[    7.062476] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\Microsoft SQL Server\110\Tools\Binn\

[    7.062588] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\Microsoft SQL Server\130\Tools\Binn\

[    7.062701] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\AdoptOpenJDK\jdk-8.0.232.09-openj9\bin

[    7.062794] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files\Microsoft SQL Server\Client SDK\ODBC\170\Tools\Binn\

[    7.062870] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Go\bin
[    7.062917] init: (8) ERROR: UtilTranslatePathList:2670: Failed to translate C:\Program Files (x86)\dotnet\
[   49.130854] hv_balloon: Max. dynamic memory size: 12288 MB
[...even more errors about "Failed to translate"]

@nathanchance
Copy link
Owner

What version of Windows?

@catthehacker
Copy link
Author

Microsoft Windows 10.0.21301.1010, I'm on dev channel of insider preview
Have new waiting already so I can try this as well. Previous kernel works fine, if needed I can attach dmesg log as well
image

@nathanchance
Copy link
Owner

Can you please try this kernel?

@catthehacker
Copy link
Author

Seems a bit empty 😁
image

@nathanchance
Copy link
Owner

Ha, let's try this again then.

kernel-virtio.zip

@catthehacker
Copy link
Author

catthehacker commented Feb 17, 2021

Yep, that kernel works fine, I don't see any issues after quick glance. Just wondering if it's because of my configuration or Windows build?

@nathanchance
Copy link
Owner

It is because CONFIG_VIRTIO_PCI got disabled because of 86b87c9. I enabled CONFIG_VIRTIO_PCI_MODERN, which brought back CONFIG_VIRTIO_PCI. I will push a fixed build here shortly.

nathanchance pushed a commit that referenced this issue Mar 2, 2021
The ubsan reported the following error.  It was because sample's raw
data missed u32 padding at the end.  So it broke the alignment of the
array after it.

The raw data contains an u32 size prefix so the data size should have
an u32 padding after 8-byte aligned data.

27: Sample parsing  :util/synthetic-events.c:1539:4:
  runtime error: store to misaligned address 0x62100006b9bc for type
  '__u64' (aka 'unsigned long long'), which requires 8 byte alignment
0x62100006b9bc: note: pointer points here
  00 00 00 00 ff ff ff ff  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff
              ^
    #0 0x561532a9fc96 in perf_event__synthesize_sample util/synthetic-events.c:1539:13
    #1 0x5615327f4a4f in do_test tests/sample-parsing.c:284:8
    #2 0x5615327f3f50 in test__sample_parsing tests/sample-parsing.c:381:9
    #3 0x56153279d3a1 in run_test tests/builtin-test.c:424:9
    #4 0x56153279c836 in test_and_print tests/builtin-test.c:454:9
    #5 0x56153279b7eb in __cmd_test tests/builtin-test.c:675:4
    #6 0x56153279abf0 in cmd_test tests/builtin-test.c:821:9
    #7 0x56153264e796 in run_builtin perf.c:312:11
    #8 0x56153264cf03 in handle_internal_command perf.c:364:8
    #9 0x56153264e47d in run_argv perf.c:408:2
    #10 0x56153264c9a9 in main perf.c:538:3
    #11 0x7f137ab6fbbc in __libc_start_main (/lib64/libc.so.6+0x38bbc)
    #12 0x561532596828 in _start ...

SUMMARY: UndefinedBehaviorSanitizer: misaligned-pointer-use
 util/synthetic-events.c:1539:4 in

Fixes: 045f8cd ("perf tests: Add a sample parsing test")
Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 2, 2021
lanai_dev_open() can fail. When it fail, lanai->base is unmapped and the
pci device is disabled. The caller, lanai_init_one(), then tries to run
atm_dev_deregister(). This will subsequently call lanai_dev_close() and
use the already released MMIO area.

To fix this issue, set the lanai->base to NULL if open fail,
and test the flag in lanai_dev_close().

[    8.324153] lanai: lanai_start() failed, err=19
[    8.324819] lanai(itf 0): shutting down interface
[    8.325211] BUG: unable to handle page fault for address: ffffc90000180024
[    8.325781] #PF: supervisor write access in kernel mode
[    8.326215] #PF: error_code(0x0002) - not-present page
[    8.326641] PGD 100000067 P4D 100000067 PUD 100139067 PMD 10013a067 PTE 0
[    8.327206] Oops: 0002 [#1] SMP KASAN NOPTI
[    8.327557] CPU: 0 PID: 95 Comm: modprobe Not tainted 5.11.0-rc7-00090-gdcc0b49040c7 #12
[    8.328229] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-4
[    8.329145] RIP: 0010:lanai_dev_close+0x4f/0xe5 [lanai]
[    8.329587] Code: 00 48 c7 c7 00 d3 01 c0 e8 49 4e 0a c2 48 8d bd 08 02 00 00 e8 6e 52 14 c1 48 80
[    8.330917] RSP: 0018:ffff8881029ef680 EFLAGS: 00010246
[    8.331196] RAX: 000000000003fffe RBX: ffff888102fb4800 RCX: ffffffffc001a98a
[    8.331572] RDX: ffffc90000180000 RSI: 0000000000000246 RDI: ffff888102fb4000
[    8.331948] RBP: ffff888102fb4000 R08: ffffffff8115da8a R09: ffffed102053deaa
[    8.332326] R10: 0000000000000003 R11: ffffed102053dea9 R12: ffff888102fb48a4
[    8.332701] R13: ffffffffc00123c0 R14: ffff888102fb4b90 R15: ffff888102fb4b88
[    8.333077] FS:  00007f08eb9056a0(0000) GS:ffff88815b400000(0000) knlGS:0000000000000000
[    8.333502] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[    8.333806] CR2: ffffc90000180024 CR3: 0000000102a28000 CR4: 00000000000006f0
[    8.334182] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[    8.334557] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[    8.334932] Call Trace:
[    8.335066]  atm_dev_deregister+0x161/0x1a0 [atm]
[    8.335324]  lanai_init_one.cold+0x20c/0x96d [lanai]
[    8.335594]  ? lanai_send+0x2a0/0x2a0 [lanai]
[    8.335831]  local_pci_probe+0x6f/0xb0
[    8.336039]  pci_device_probe+0x171/0x240
[    8.336255]  ? pci_device_remove+0xe0/0xe0
[    8.336475]  ? kernfs_create_link+0xb6/0x110
[    8.336704]  ? sysfs_do_create_link_sd.isra.0+0x76/0xe0
[    8.336983]  really_probe+0x161/0x420
[    8.337181]  driver_probe_device+0x6d/0xd0
[    8.337401]  device_driver_attach+0x82/0x90
[    8.337626]  ? device_driver_attach+0x90/0x90
[    8.337859]  __driver_attach+0x60/0x100
[    8.338065]  ? device_driver_attach+0x90/0x90
[    8.338298]  bus_for_each_dev+0xe1/0x140
[    8.338511]  ? subsys_dev_iter_exit+0x10/0x10
[    8.338745]  ? klist_node_init+0x61/0x80
[    8.338956]  bus_add_driver+0x254/0x2a0
[    8.339164]  driver_register+0xd3/0x150
[    8.339370]  ? 0xffffffffc0028000
[    8.339550]  do_one_initcall+0x84/0x250
[    8.339755]  ? trace_event_raw_event_initcall_finish+0x150/0x150
[    8.340076]  ? free_vmap_area_noflush+0x1a5/0x5c0
[    8.340329]  ? unpoison_range+0xf/0x30
[    8.340532]  ? ____kasan_kmalloc.constprop.0+0x84/0xa0
[    8.340806]  ? unpoison_range+0xf/0x30
[    8.341014]  ? unpoison_range+0xf/0x30
[    8.341217]  do_init_module+0xf8/0x350
[    8.341419]  load_module+0x3fe6/0x4340
[    8.341621]  ? vm_unmap_ram+0x1d0/0x1d0
[    8.341826]  ? ____kasan_kmalloc.constprop.0+0x84/0xa0
[    8.342101]  ? module_frob_arch_sections+0x20/0x20
[    8.342358]  ? __do_sys_finit_module+0x108/0x170
[    8.342604]  __do_sys_finit_module+0x108/0x170
[    8.342841]  ? __ia32_sys_init_module+0x40/0x40
[    8.343083]  ? file_open_root+0x200/0x200
[    8.343298]  ? do_sys_open+0x85/0xe0
[    8.343491]  ? filp_open+0x50/0x50
[    8.343675]  ? exit_to_user_mode_prepare+0xfc/0x130
[    8.343935]  do_syscall_64+0x33/0x40
[    8.344132]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
[    8.344401] RIP: 0033:0x7f08eb887cf7
[    8.344594] Code: 48 89 57 30 48 8b 04 24 48 89 47 38 e9 1d a0 02 00 48 89 f8 48 89 f7 48 89 d6 41
[    8.345565] RSP: 002b:00007ffcd5c98ad8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
[    8.345962] RAX: ffffffffffffffda RBX: 00000000008fea70 RCX: 00007f08eb887cf7
[    8.346336] RDX: 0000000000000000 RSI: 00000000008fd9e0 RDI: 0000000000000003
[    8.346711] RBP: 0000000000000003 R08: 0000000000000000 R09: 0000000000000001
[    8.347085] R10: 00007f08eb8eb300 R11: 0000000000000246 R12: 00000000008fd9e0
[    8.347460] R13: 0000000000000000 R14: 00000000008fddd0 R15: 0000000000000001
[    8.347836] Modules linked in: lanai(+) atm
[    8.348065] CR2: ffffc90000180024
[    8.348244] ---[ end trace 7fdc1c668f2003e5 ]---
[    8.348490] RIP: 0010:lanai_dev_close+0x4f/0xe5 [lanai]
[    8.348772] Code: 00 48 c7 c7 00 d3 01 c0 e8 49 4e 0a c2 48 8d bd 08 02 00 00 e8 6e 52 14 c1 48 80
[    8.349745] RSP: 0018:ffff8881029ef680 EFLAGS: 00010246
[    8.350022] RAX: 000000000003fffe RBX: ffff888102fb4800 RCX: ffffffffc001a98a
[    8.350397] RDX: ffffc90000180000 RSI: 0000000000000246 RDI: ffff888102fb4000
[    8.350772] RBP: ffff888102fb4000 R08: ffffffff8115da8a R09: ffffed102053deaa
[    8.351151] R10: 0000000000000003 R11: ffffed102053dea9 R12: ffff888102fb48a4
[    8.351525] R13: ffffffffc00123c0 R14: ffff888102fb4b90 R15: ffff888102fb4b88
[    8.351918] FS:  00007f08eb9056a0(0000) GS:ffff88815b400000(0000) knlGS:0000000000000000
[    8.352343] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[    8.352647] CR2: ffffc90000180024 CR3: 0000000102a28000 CR4: 00000000000006f0
[    8.353022] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[    8.353397] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[    8.353958] modprobe (95) used greatest stack depth: 26216 bytes left

Signed-off-by: Tong Zhang <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 4, 2021
Calling btrfs_qgroup_reserve_meta_prealloc from
btrfs_delayed_inode_reserve_metadata can result in flushing delalloc
while holding a transaction and delayed node locks. This is deadlock
prone. In the past multiple commits:

 * ae5e070 ("btrfs: qgroup: don't try to wait flushing if we're
already holding a transaction")

 * 6f23277 ("btrfs: qgroup: don't commit transaction when we already
 hold the handle")

Tried to solve various aspects of this but this was always a
whack-a-mole game. Unfortunately those 2 fixes don't solve a deadlock
scenario involving btrfs_delayed_node::mutex. Namely, one thread
can call btrfs_dirty_inode as a result of reading a file and modifying
its atime:

  PID: 6963   TASK: ffff8c7f3f94c000  CPU: 2   COMMAND: "test"
  #0  __schedule at ffffffffa529e07d
  #1  schedule at ffffffffa529e4ff
  #2  schedule_timeout at ffffffffa52a1bdd
  #3  wait_for_completion at ffffffffa529eeea             <-- sleeps with delayed node mutex held
  #4  start_delalloc_inodes at ffffffffc0380db5
  #5  btrfs_start_delalloc_snapshot at ffffffffc0393836
  #6  try_flush_qgroup at ffffffffc03f04b2
  #7  __btrfs_qgroup_reserve_meta at ffffffffc03f5bb6     <-- tries to reserve space and starts delalloc inodes.
  #8  btrfs_delayed_update_inode at ffffffffc03e31aa      <-- acquires delayed node mutex
  #9  btrfs_update_inode at ffffffffc0385ba8
 #10  btrfs_dirty_inode at ffffffffc038627b               <-- TRANSACTIION OPENED
 #11  touch_atime at ffffffffa4cf0000
 #12  generic_file_read_iter at ffffffffa4c1f123
 #13  new_sync_read at ffffffffa4ccdc8a
 #14  vfs_read at ffffffffa4cd0849
 #15  ksys_read at ffffffffa4cd0bd1
 #16  do_syscall_64 at ffffffffa4a052eb
 #17  entry_SYSCALL_64_after_hwframe at ffffffffa540008c

This will cause an asynchronous work to flush the delalloc inodes to
happen which can try to acquire the same delayed_node mutex:

  PID: 455    TASK: ffff8c8085fa4000  CPU: 5   COMMAND: "kworker/u16:30"
  #0  __schedule at ffffffffa529e07d
  #1  schedule at ffffffffa529e4ff
  #2  schedule_preempt_disabled at ffffffffa529e80a
  #3  __mutex_lock at ffffffffa529fdcb                    <-- goes to sleep, never wakes up.
  #4  btrfs_delayed_update_inode at ffffffffc03e3143      <-- tries to acquire the mutex
  #5  btrfs_update_inode at ffffffffc0385ba8              <-- this is the same inode that pid 6963 is holding
  #6  cow_file_range_inline.constprop.78 at ffffffffc0386be7
  #7  cow_file_range at ffffffffc03879c1
  #8  btrfs_run_delalloc_range at ffffffffc038894c
  #9  writepage_delalloc at ffffffffc03a3c8f
 #10  __extent_writepage at ffffffffc03a4c01
 #11  extent_write_cache_pages at ffffffffc03a500b
 #12  extent_writepages at ffffffffc03a6de2
 #13  do_writepages at ffffffffa4c277eb
 #14  __filemap_fdatawrite_range at ffffffffa4c1e5bb
 #15  btrfs_run_delalloc_work at ffffffffc0380987         <-- starts running delayed nodes
 #16  normal_work_helper at ffffffffc03b706c
 #17  process_one_work at ffffffffa4aba4e4
 #18  worker_thread at ffffffffa4aba6fd
 #19  kthread at ffffffffa4ac0a3d
 #20  ret_from_fork at ffffffffa54001ff

To fully address those cases the complete fix is to never issue any
flushing while holding the transaction or the delayed node lock. This
patch achieves it by calling qgroup_reserve_meta directly which will
either succeed without flushing or will fail and return -EDQUOT. In the
latter case that return value is going to be propagated to
btrfs_dirty_inode which will fallback to start a new transaction. That's
fine as the majority of time we expect the inode will have
BTRFS_DELAYED_NODE_INODE_DIRTY flag set which will result in directly
copying the in-memory state.

Fixes: c53e965 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: [email protected] # 5.10+
Reviewed-by: Qu Wenruo <[email protected]>
Signed-off-by: Nikolay Borisov <[email protected]>
Signed-off-by: David Sterba <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 7, 2021
Calling btrfs_qgroup_reserve_meta_prealloc from
btrfs_delayed_inode_reserve_metadata can result in flushing delalloc
while holding a transaction and delayed node locks. This is deadlock
prone. In the past multiple commits:

 * ae5e070 ("btrfs: qgroup: don't try to wait flushing if we're
already holding a transaction")

 * 6f23277 ("btrfs: qgroup: don't commit transaction when we already
 hold the handle")

Tried to solve various aspects of this but this was always a
whack-a-mole game. Unfortunately those 2 fixes don't solve a deadlock
scenario involving btrfs_delayed_node::mutex. Namely, one thread
can call btrfs_dirty_inode as a result of reading a file and modifying
its atime:

  PID: 6963   TASK: ffff8c7f3f94c000  CPU: 2   COMMAND: "test"
  #0  __schedule at ffffffffa529e07d
  #1  schedule at ffffffffa529e4ff
  #2  schedule_timeout at ffffffffa52a1bdd
  #3  wait_for_completion at ffffffffa529eeea             <-- sleeps with delayed node mutex held
  #4  start_delalloc_inodes at ffffffffc0380db5
  #5  btrfs_start_delalloc_snapshot at ffffffffc0393836
  #6  try_flush_qgroup at ffffffffc03f04b2
  #7  __btrfs_qgroup_reserve_meta at ffffffffc03f5bb6     <-- tries to reserve space and starts delalloc inodes.
  #8  btrfs_delayed_update_inode at ffffffffc03e31aa      <-- acquires delayed node mutex
  #9  btrfs_update_inode at ffffffffc0385ba8
 #10  btrfs_dirty_inode at ffffffffc038627b               <-- TRANSACTIION OPENED
 #11  touch_atime at ffffffffa4cf0000
 #12  generic_file_read_iter at ffffffffa4c1f123
 #13  new_sync_read at ffffffffa4ccdc8a
 #14  vfs_read at ffffffffa4cd0849
 #15  ksys_read at ffffffffa4cd0bd1
 #16  do_syscall_64 at ffffffffa4a052eb
 #17  entry_SYSCALL_64_after_hwframe at ffffffffa540008c

This will cause an asynchronous work to flush the delalloc inodes to
happen which can try to acquire the same delayed_node mutex:

  PID: 455    TASK: ffff8c8085fa4000  CPU: 5   COMMAND: "kworker/u16:30"
  #0  __schedule at ffffffffa529e07d
  #1  schedule at ffffffffa529e4ff
  #2  schedule_preempt_disabled at ffffffffa529e80a
  #3  __mutex_lock at ffffffffa529fdcb                    <-- goes to sleep, never wakes up.
  #4  btrfs_delayed_update_inode at ffffffffc03e3143      <-- tries to acquire the mutex
  #5  btrfs_update_inode at ffffffffc0385ba8              <-- this is the same inode that pid 6963 is holding
  #6  cow_file_range_inline.constprop.78 at ffffffffc0386be7
  #7  cow_file_range at ffffffffc03879c1
  #8  btrfs_run_delalloc_range at ffffffffc038894c
  #9  writepage_delalloc at ffffffffc03a3c8f
 #10  __extent_writepage at ffffffffc03a4c01
 #11  extent_write_cache_pages at ffffffffc03a500b
 #12  extent_writepages at ffffffffc03a6de2
 #13  do_writepages at ffffffffa4c277eb
 #14  __filemap_fdatawrite_range at ffffffffa4c1e5bb
 #15  btrfs_run_delalloc_work at ffffffffc0380987         <-- starts running delayed nodes
 #16  normal_work_helper at ffffffffc03b706c
 #17  process_one_work at ffffffffa4aba4e4
 #18  worker_thread at ffffffffa4aba6fd
 #19  kthread at ffffffffa4ac0a3d
 #20  ret_from_fork at ffffffffa54001ff

To fully address those cases the complete fix is to never issue any
flushing while holding the transaction or the delayed node lock. This
patch achieves it by calling qgroup_reserve_meta directly which will
either succeed without flushing or will fail and return -EDQUOT. In the
latter case that return value is going to be propagated to
btrfs_dirty_inode which will fallback to start a new transaction. That's
fine as the majority of time we expect the inode will have
BTRFS_DELAYED_NODE_INODE_DIRTY flag set which will result in directly
copying the in-memory state.

Fixes: c53e965 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
CC: [email protected] # 5.10+
Reviewed-by: Qu Wenruo <[email protected]>
Signed-off-by: Nikolay Borisov <[email protected]>
Signed-off-by: David Sterba <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
The evlist has the maps with its own refcounts so we don't need to set
the pointers to NULL.  Otherwise following error was reported by Asan.

  # perf test -v 4
   4: Read samples using the mmap interface      :
  --- start ---
  test child forked, pid 139782
  mmap size 528384B

  =================================================================
  ==139782==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 40 byte(s) in 1 object(s) allocated from:
    #0 0x7f1f76daee8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
    #1 0x564ba21a0fea in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79
    #2 0x564ba21a1a0f in perf_cpu_map__read /home/namhyung/project/linux/tools/lib/perf/cpumap.c:149
    #3 0x564ba21a21cf in cpu_map__read_all_cpu_map /home/namhyung/project/linux/tools/lib/perf/cpumap.c:166
    #4 0x564ba21a21cf in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:181
    #5 0x564ba1e48298 in test__basic_mmap tests/mmap-basic.c:55
    #6 0x564ba1e278fb in run_test tests/builtin-test.c:428
    #7 0x564ba1e278fb in test_and_print tests/builtin-test.c:458
    #8 0x564ba1e29a53 in __cmd_test tests/builtin-test.c:679
    #9 0x564ba1e29a53 in cmd_test tests/builtin-test.c:825
    #10 0x564ba1e95cb4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #11 0x564ba1d1fa88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #12 0x564ba1d1fa88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #13 0x564ba1d1fa88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #14 0x7f1f768e4d09 in __libc_start_main ../csu/libc-start.c:308

    ...
  test child finished with 1
  ---- end ----
  Read samples using the mmap interface: FAILED!
  failed to open shell test directory: /home/namhyung/libexec/perf-core/tests/shell

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Stephane Eranian <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
The evlist has the maps with its own refcounts so we don't need to set
the pointers to NULL.  Otherwise following error was reported by Asan.

Also change the goto label since it doesn't need to have two.

  # perf test -v 24
  24: Number of exit events of a simple workload :
  --- start ---
  test child forked, pid 145915
  mmap size 528384B

  =================================================================
  ==145915==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 32 byte(s) in 1 object(s) allocated from:
    #0 0x7fc44e50d1f8 in __interceptor_realloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:164
    #1 0x561cf50f4d2e in perf_thread_map__realloc /home/namhyung/project/linux/tools/lib/perf/threadmap.c:23
    #2 0x561cf4eeb949 in thread_map__new_by_tid util/thread_map.c:63
    #3 0x561cf4db7fd2 in test__task_exit tests/task-exit.c:74
    #4 0x561cf4d798fb in run_test tests/builtin-test.c:428
    #5 0x561cf4d798fb in test_and_print tests/builtin-test.c:458
    #6 0x561cf4d7ba53 in __cmd_test tests/builtin-test.c:679
    #7 0x561cf4d7ba53 in cmd_test tests/builtin-test.c:825
    #8 0x561cf4de7d04 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #9 0x561cf4c71a88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #10 0x561cf4c71a88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #11 0x561cf4c71a88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #12 0x7fc44e042d09 in __libc_start_main ../csu/libc-start.c:308

    ...
  test child finished with 1
  ---- end ----
  Number of exit events of a simple workload: FAILED!

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
The evlist has the maps with its own refcounts so we don't need to set
the pointers to NULL.  Otherwise following error was reported by Asan.

Also change the goto label since it doesn't need to have two.

  # perf test -v 25
  25: Software clock events period values        :
  --- start ---
  test child forked, pid 149154
  mmap size 528384B
  mmap size 528384B

  =================================================================
  ==149154==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 32 byte(s) in 1 object(s) allocated from:
    #0 0x7fef5cd071f8 in __interceptor_realloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:164
    #1 0x56260d5e8b8e in perf_thread_map__realloc /home/namhyung/project/linux/tools/lib/perf/threadmap.c:23
    #2 0x56260d3df7a9 in thread_map__new_by_tid util/thread_map.c:63
    #3 0x56260d2ac6b2 in __test__sw_clock_freq tests/sw-clock.c:65
    #4 0x56260d26d8fb in run_test tests/builtin-test.c:428
    #5 0x56260d26d8fb in test_and_print tests/builtin-test.c:458
    #6 0x56260d26fa53 in __cmd_test tests/builtin-test.c:679
    #7 0x56260d26fa53 in cmd_test tests/builtin-test.c:825
    #8 0x56260d2dbb64 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #9 0x56260d165a88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #10 0x56260d165a88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #11 0x56260d165a88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #12 0x7fef5c83cd09 in __libc_start_main ../csu/libc-start.c:308

    ...
  test child finished with 1
  ---- end ----
  Software clock events period values      : FAILED!

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
The evlist and the cpu/thread maps should be released together.
Otherwise following error was reported by Asan.

Note that this test still has memory leaks in DSOs so it still fails
even after this change.  I'll take a look at that too.

  # perf test -v 26
  26: Object code reading                        :
  --- start ---
  test child forked, pid 154184
  Looking at the vmlinux_path (8 entries long)
  symsrc__init: build id mismatch for vmlinux.
  symsrc__init: cannot get elf header.
  Using /proc/kcore for kernel data
  Using /proc/kallsyms for symbols
  Parsing event 'cycles'
  mmap size 528384B
  ...
  =================================================================
  ==154184==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 439 byte(s) in 1 object(s) allocated from:
    #0 0x7fcb66e77037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154
    #1 0x55ad9b7e821e in dso__new_id util/dso.c:1256
    #2 0x55ad9b8cfd4a in __machine__addnew_vdso util/vdso.c:132
    #3 0x55ad9b8cfd4a in machine__findnew_vdso util/vdso.c:347
    #4 0x55ad9b845b7e in map__new util/map.c:176
    #5 0x55ad9b8415a2 in machine__process_mmap2_event util/machine.c:1787
    #6 0x55ad9b8fab16 in perf_tool__process_synth_event util/synthetic-events.c:64
    #7 0x55ad9b8fab16 in perf_event__synthesize_mmap_events util/synthetic-events.c:499
    #8 0x55ad9b8fbfdf in __event__synthesize_thread util/synthetic-events.c:741
    #9 0x55ad9b8ff3e3 in perf_event__synthesize_thread_map util/synthetic-events.c:833
    #10 0x55ad9b738585 in do_test_code_reading tests/code-reading.c:608
    #11 0x55ad9b73b25d in test__code_reading tests/code-reading.c:722
    #12 0x55ad9b6f28fb in run_test tests/builtin-test.c:428
    #13 0x55ad9b6f28fb in test_and_print tests/builtin-test.c:458
    #14 0x55ad9b6f4a53 in __cmd_test tests/builtin-test.c:679
    #15 0x55ad9b6f4a53 in cmd_test tests/builtin-test.c:825
    #16 0x55ad9b760cc4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #17 0x55ad9b5eaa88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #18 0x55ad9b5eaa88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #19 0x55ad9b5eaa88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #20 0x7fcb669acd09 in __libc_start_main ../csu/libc-start.c:308

    ...
  SUMMARY: AddressSanitizer: 471 byte(s) leaked in 2 allocation(s).
  test child finished with 1
  ---- end ----
  Object code reading: FAILED!

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
The evlist and the cpu/thread maps should be released together.
Otherwise following error was reported by Asan.

  $ perf test -v 28
  28: Use a dummy software event to keep tracking:
  --- start ---
  test child forked, pid 156810
  mmap size 528384B

  =================================================================
  ==156810==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 40 byte(s) in 1 object(s) allocated from:
    #0 0x7f637d2bce8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
    #1 0x55cc6295cffa in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79
    #2 0x55cc6295da1f in perf_cpu_map__read /home/namhyung/project/linux/tools/lib/perf/cpumap.c:149
    #3 0x55cc6295e1df in cpu_map__read_all_cpu_map /home/namhyung/project/linux/tools/lib/perf/cpumap.c:166
    #4 0x55cc6295e1df in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:181
    #5 0x55cc626287cf in test__keep_tracking tests/keep-tracking.c:84
    #6 0x55cc625e38fb in run_test tests/builtin-test.c:428
    #7 0x55cc625e38fb in test_and_print tests/builtin-test.c:458
    #8 0x55cc625e5a53 in __cmd_test tests/builtin-test.c:679
    #9 0x55cc625e5a53 in cmd_test tests/builtin-test.c:825
    #10 0x55cc62651cc4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #11 0x55cc624dba88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #12 0x55cc624dba88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #13 0x55cc624dba88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #14 0x7f637cdf2d09 in __libc_start_main ../csu/libc-start.c:308

  SUMMARY: AddressSanitizer: 72 byte(s) leaked in 2 allocation(s).
  test child finished with 1
  ---- end ----
  Use a dummy software event to keep tracking: FAILED!

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
The evlist and cpu/thread maps should be released together.
Otherwise the following error was reported by Asan.

  $ perf test -v 35
  35: Track with sched_switch                    :
  --- start ---
  test child forked, pid 159287
  Using CPUID GenuineIntel-6-8E-C
  mmap size 528384B
  1295 events recorded

  =================================================================
  ==159287==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 40 byte(s) in 1 object(s) allocated from:
    #0 0x7fa28d9a2e8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
    #1 0x5652f5a5affa in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79
    #2 0x5652f5a5ba1f in perf_cpu_map__read /home/namhyung/project/linux/tools/lib/perf/cpumap.c:149
    #3 0x5652f5a5c1df in cpu_map__read_all_cpu_map /home/namhyung/project/linux/tools/lib/perf/cpumap.c:166
    #4 0x5652f5a5c1df in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:181
    #5 0x5652f5723bbf in test__switch_tracking tests/switch-tracking.c:350
    #6 0x5652f56e18fb in run_test tests/builtin-test.c:428
    #7 0x5652f56e18fb in test_and_print tests/builtin-test.c:458
    #8 0x5652f56e3a53 in __cmd_test tests/builtin-test.c:679
    #9 0x5652f56e3a53 in cmd_test tests/builtin-test.c:825
    #10 0x5652f574fcc4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #11 0x5652f55d9a88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #12 0x5652f55d9a88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #13 0x5652f55d9a88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #14 0x7fa28d4d8d09 in __libc_start_main ../csu/libc-start.c:308

  SUMMARY: AddressSanitizer: 72 byte(s) leaked in 2 allocation(s).
  test child finished with 1
  ---- end ----
  Track with sched_switch: FAILED!

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
It missed to call perf_thread_map__put() after using the map.

  $ perf test -v 43
  43: Synthesize thread map                      :
  --- start ---
  test child forked, pid 162640

  =================================================================
  ==162640==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 32 byte(s) in 1 object(s) allocated from:
    #0 0x7fd48cdaa1f8 in __interceptor_realloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:164
    #1 0x563e6d5f8d0e in perf_thread_map__realloc /home/namhyung/project/linux/tools/lib/perf/threadmap.c:23
    #2 0x563e6d3ef69a in thread_map__new_by_pid util/thread_map.c:46
    #3 0x563e6d2cec90 in test__thread_map_synthesize tests/thread-map.c:97
    #4 0x563e6d27d8fb in run_test tests/builtin-test.c:428
    #5 0x563e6d27d8fb in test_and_print tests/builtin-test.c:458
    #6 0x563e6d27fa53 in __cmd_test tests/builtin-test.c:679
    #7 0x563e6d27fa53 in cmd_test tests/builtin-test.c:825
    #8 0x563e6d2ebce4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #9 0x563e6d175a88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #10 0x563e6d175a88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #11 0x563e6d175a88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #12 0x7fd48c8dfd09 in __libc_start_main ../csu/libc-start.c:308

  SUMMARY: AddressSanitizer: 8224 byte(s) leaked in 2 allocation(s).
  test child finished with 1
  ---- end ----
  Synthesize thread map: FAILED!

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
It should be released after printing the map.

  $ perf test -v 52
  52: Print cpu map                              :
  --- start ---
  test child forked, pid 172233

  =================================================================
  ==172233==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 156 byte(s) in 1 object(s) allocated from:
    #0 0x7fc472518e8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
    #1 0x55e63b378f7a in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79
    #2 0x55e63b37a05c in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:237
    #3 0x55e63b056d16 in cpu_map_print tests/cpumap.c:102
    #4 0x55e63b056d16 in test__cpu_map_print tests/cpumap.c:120
    #5 0x55e63afff8fb in run_test tests/builtin-test.c:428
    #6 0x55e63afff8fb in test_and_print tests/builtin-test.c:458
    #7 0x55e63b001a53 in __cmd_test tests/builtin-test.c:679
    #8 0x55e63b001a53 in cmd_test tests/builtin-test.c:825
    #9 0x55e63b06dc44 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #10 0x55e63aef7a88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #11 0x55e63aef7a88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #12 0x55e63aef7a88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #13 0x7fc47204ed09 in __libc_start_main ../csu/libc-start.c:308
  ...

  SUMMARY: AddressSanitizer: 448 byte(s) leaked in 7 allocation(s).
  test child finished with 1
  ---- end ----
  Print cpu map: FAILED!

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
It should release the maps at the end.

  $ perf test -v 71
  71: Convert perf time to TSC                   :
  --- start ---
  test child forked, pid 178744
  mmap size 528384B
  1st event perf time 59207256505278 tsc 13187166645142
  rdtsc          time 59207256542151 tsc 13187166723020
  2nd event perf time 59207256543749 tsc 13187166726393

  =================================================================
  ==178744==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 40 byte(s) in 1 object(s) allocated from:
    #0 0x7faf601f9e8f in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
    #1 0x55b620cfc00a in cpu_map__trim_new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:79
    #2 0x55b620cfca2f in perf_cpu_map__read /home/namhyung/project/linux/tools/lib/perf/cpumap.c:149
    #3 0x55b620cfd1ef in cpu_map__read_all_cpu_map /home/namhyung/project/linux/tools/lib/perf/cpumap.c:166
    #4 0x55b620cfd1ef in perf_cpu_map__new /home/namhyung/project/linux/tools/lib/perf/cpumap.c:181
    #5 0x55b6209ef1b2 in test__perf_time_to_tsc tests/perf-time-to-tsc.c:73
    #6 0x55b6209828fb in run_test tests/builtin-test.c:428
    #7 0x55b6209828fb in test_and_print tests/builtin-test.c:458
    #8 0x55b620984a53 in __cmd_test tests/builtin-test.c:679
    #9 0x55b620984a53 in cmd_test tests/builtin-test.c:825
    #10 0x55b6209f0cd4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #11 0x55b62087aa88 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #12 0x55b62087aa88 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #13 0x55b62087aa88 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #14 0x7faf5fd2fd09 in __libc_start_main ../csu/libc-start.c:308

  SUMMARY: AddressSanitizer: 72 byte(s) leaked in 2 allocation(s).
  test child finished with 1
  ---- end ----
  Convert perf time to TSC: FAILED!

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 10, 2021
I got a segfault when using -r option with event groups.  The option
makes it run the workload multiple times and it will reuse the evlist
and evsel for each run.

While most of resources are allocated and freed properly, the id hash
in the evlist was not and it resulted in the bug.  You can see it with
the address sanitizer like below:

  $ perf stat -r 100 -e '{cycles,instructions}' true
  =================================================================
  ==693052==ERROR: AddressSanitizer: heap-use-after-free on
      address 0x6080000003d0 at pc 0x558c57732835 bp 0x7fff1526adb0 sp 0x7fff1526ada8
  WRITE of size 8 at 0x6080000003d0 thread T0
    #0 0x558c57732834 in hlist_add_head /home/namhyung/project/linux/tools/include/linux/list.h:644
    #1 0x558c57732834 in perf_evlist__id_hash /home/namhyung/project/linux/tools/lib/perf/evlist.c:237
    #2 0x558c57732834 in perf_evlist__id_add /home/namhyung/project/linux/tools/lib/perf/evlist.c:244
    #3 0x558c57732834 in perf_evlist__id_add_fd /home/namhyung/project/linux/tools/lib/perf/evlist.c:285
    #4 0x558c5747733e in store_evsel_ids util/evsel.c:2765
    #5 0x558c5747733e in evsel__store_ids util/evsel.c:2782
    #6 0x558c5730b717 in __run_perf_stat /home/namhyung/project/linux/tools/perf/builtin-stat.c:895
    #7 0x558c5730b717 in run_perf_stat /home/namhyung/project/linux/tools/perf/builtin-stat.c:1014
    #8 0x558c5730b717 in cmd_stat /home/namhyung/project/linux/tools/perf/builtin-stat.c:2446
    #9 0x558c57427c24 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
    #10 0x558c572b1a48 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
    #11 0x558c572b1a48 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
    #12 0x558c572b1a48 in main /home/namhyung/project/linux/tools/perf/perf.c:539
    #13 0x7fcadb9f7d09 in __libc_start_main ../csu/libc-start.c:308
    #14 0x558c572b60f9 in _start (/home/namhyung/project/linux/tools/perf/perf+0x45d0f9)

Actually the nodes in the hash table are struct perf_stream_id and
they were freed in the previous run.  Fix it by resetting the hash.

Signed-off-by: Namhyung Kim <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Arnaldo Carvalho de Melo <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 26, 2021
Pablo Neira Ayuso says:

====================
netfilter: flowtable enhancements

[ This is v2 that includes documentation enhancements, including
  existing limitations. This is a rebase on top on net-next. ]

The following patchset augments the Netfilter flowtable fastpath to
support for network topologies that combine IP forwarding, bridge,
classic VLAN devices, bridge VLAN filtering, DSA and PPPoE. This
includes support for the flowtable software and hardware datapaths.

The following pictures provides an example scenario:

                        fast path!
                .------------------------.
               /                          \
               |           IP forwarding  |
               |          /             \ \/
               |       br0               wan ..... eth0
               .       / \                         host C
               -> veth1  veth2
                   .           switch/router
                   .
                   .
                 eth0
                host A

The bridge master device 'br0' has an IP address and a DHCP server is
also assumed to be running to provide connectivity to host A which
reaches the Internet through 'br0' as default gateway. Then, packet
enters the IP forwarding path and Netfilter is used to NAT the packets
before they leave through the wan device.

The general idea is to accelerate forwarding by building a fast path
that takes packets from the ingress path of the bridge port and place
them in the egress path of the wan device (and vice versa). Hence,
skipping the classic bridge and IP stack paths.

** Patch from #1 to #6 add the infrastructure which describes the list of
   netdevice hops to reach a given destination MAC address in the local
   network topology.

Patch #1 adds dev_fill_forward_path() and .ndo_fill_forward_path() to
         netdev_ops.

Patch #2 adds .ndo_fill_forward_path for vlan devices, which provides
         the next device hop via vlan->real_dev, the vlan ID and the
         protocol.

Patch #3 adds .ndo_fill_forward_path for bridge devices, which allows to make
         lookups to the FDB to locate the next device hop (bridge port) in the
         forwarding path.

Patch #4 extends bridge .ndo_fill_forward_path to support for bridge VLAN
         filtering.

Patch #5 adds .ndo_fill_forward_path for PPPoE devices.

Patch #6 adds .ndo_fill_forward_path for DSA.

Patches from #7 to #14 update the flowtable software datapath:

Patch #7 adds the transmit path type field to the flow tuple. Two transmit
         paths are supported so far: the neighbour and the xfrm transmit
         paths.

Patch #8 and #9 update the flowtable datapath to use dev_fill_forward_path()
         to obtain the real ingress/egress device for the flowtable datapath.
         This adds the new ethernet xmit direct path to the flowtable.

Patch #10 adds native flowtable VLAN support (up to 2 VLAN tags) through
          dev_fill_forward_path(). The flowtable stores the VLAN id and
          protocol in the flow tuple.

Patch #11 adds native flowtable bridge VLAN filter support through
          dev_fill_forward_path().

Patch #12 adds native flowtable bridge PPPoE through dev_fill_forward_path().

Patch #13 adds DSA support through dev_fill_forward_path().

Patch #14 extends flowtable selftests to cover for flowtable software
          datapath enhancements.

** Patches from #15 to #20 update the flowtable hardware offload datapath:

Patch #15 extends the flowtable hardware offload to support for the
          direct ethernet xmit path. This also includes VLAN support.

Patch #16 stores the egress real device in the flow tuple. The software
          flowtable datapath uses dev_hard_header() to transmit packets,
          hence it might refer to VLAN/DSA/PPPoE software device, not
          the real ethernet device.

Patch #17 deals with switchdev PVID hardware offload to skip it on
          egress.

Patch #18 adds FLOW_ACTION_PPPOE_PUSH to the flow_offload action API.

Patch #19 extends the flowtable hardware offload to support for PPPoE

Patch #20 adds TC_SETUP_FT support for DSA.

** Patches from #20 to #23: Felix Fietkau adds a new driver which support
   hardware offload for the mtk PPE engine through the existing flow
   offload API which supports for the flowtable enhancements coming in
   this batch.

Patch #24 extends the documentation and describe existing limitations.

Please, apply, thanks.
====================

Signed-off-by: David S. Miller <[email protected]>
nathanchance pushed a commit that referenced this issue May 11, 2021
When an amdgpu device fails to init, it makes another VGA device cause
kernel splat:
kernel: amdgpu 0000:08:00.0: amdgpu: amdgpu_device_ip_init failed
kernel: amdgpu 0000:08:00.0: amdgpu: Fatal error during GPU init
kernel: amdgpu: probe of 0000:08:00.0 failed with error -110
...
kernel: amdgpu 0000:01:00.0: vgaarb: changed VGA decodes: olddecodes=io+mem,decodes=none:owns=none
kernel: BUG: kernel NULL pointer dereference, address: 0000000000000018
kernel: #PF: supervisor read access in kernel mode
kernel: #PF: error_code(0x0000) - not-present page
kernel: PGD 0 P4D 0
kernel: Oops: 0000 [#1] SMP NOPTI
kernel: CPU: 6 PID: 1080 Comm: Xorg Tainted: G        W         5.12.0-rc8+ #12
kernel: Hardware name: HP HP EliteDesk 805 G6/872B, BIOS S09 Ver. 02.02.00 12/30/2020
kernel: RIP: 0010:amdgpu_device_vga_set_decode+0x13/0x30 [amdgpu]
kernel: Code: 06 31 c0 c3 b8 ea ff ff ff 5d c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 1f 44 00 00 55 48 8b 87 90 06 00 00 48 89 e5 53 89 f3 <48> 8b 40 18 40 0f b6 f6 e8 40 58 39 fd 80 fb 01 5b 5d 19 c0 83 e0
kernel: RSP: 0018:ffffae3c0246bd68 EFLAGS: 00010002
kernel: RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
kernel: RDX: ffff8dd1af5a8560 RSI: 0000000000000000 RDI: ffff8dce8c160000
kernel: RBP: ffffae3c0246bd70 R08: ffff8dd1af5985c0 R09: ffffae3c0246ba38
kernel: R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000246
kernel: R13: 0000000000000000 R14: 0000000000000003 R15: ffff8dce81490000
kernel: FS:  00007f9303d8fa40(0000) GS:ffff8dd1af580000(0000) knlGS:0000000000000000
kernel: CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 0000000000000018 CR3: 0000000103cfa000 CR4: 0000000000350ee0
kernel: Call Trace:
kernel:  vga_arbiter_notify_clients.part.0+0x4a/0x80
kernel:  vga_get+0x17f/0x1c0
kernel:  vga_arb_write+0x121/0x6a0
kernel:  ? apparmor_file_permission+0x1c/0x20
kernel:  ? security_file_permission+0x30/0x180
kernel:  vfs_write+0xca/0x280
kernel:  ksys_write+0x67/0xe0
kernel:  __x64_sys_write+0x1a/0x20
kernel:  do_syscall_64+0x38/0x90
kernel:  entry_SYSCALL_64_after_hwframe+0x44/0xae
kernel: RIP: 0033:0x7f93041e02f7
kernel: Code: 75 05 48 83 c4 58 c3 e8 f7 33 ff ff 0f 1f 80 00 00 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24
kernel: RSP: 002b:00007fff60e49b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
kernel: RAX: ffffffffffffffda RBX: 000000000000000b RCX: 00007f93041e02f7
kernel: RDX: 000000000000000b RSI: 00007fff60e49b40 RDI: 000000000000000f
kernel: RBP: 00007fff60e49b40 R08: 00000000ffffffff R09: 00007fff60e499d0
kernel: R10: 00007f93049350b5 R11: 0000000000000246 R12: 000056111d45e808
kernel: R13: 0000000000000000 R14: 000056111d45e7f8 R15: 000056111d46c980
kernel: Modules linked in: nls_iso8859_1 snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio snd_hda_codec_hdmi snd_hda_intel snd_intel_dspcfg snd_hda_codec snd_hwdep snd_hda_core snd_pcm snd_seq input_leds snd_seq_device snd_timer snd soundcore joydev kvm_amd serio_raw k10temp mac_hid hp_wmi ccp kvm sparse_keymap wmi_bmof ucsi_acpi efi_pstore typec_ucsi rapl typec video wmi sch_fq_codel parport_pc ppdev lp parport ip_tables x_tables autofs4 btrfs blake2b_generic zstd_compress raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx libcrc32c xor raid6_pq raid1 raid0 multipath linear dm_mirror dm_region_hash dm_log hid_generic usbhid hid amdgpu drm_ttm_helper ttm iommu_v2 gpu_sched i2c_algo_bit drm_kms_helper syscopyarea sysfillrect crct10dif_pclmul sysimgblt crc32_pclmul fb_sys_fops ghash_clmulni_intel cec rc_core aesni_intel crypto_simd psmouse cryptd r8169 i2c_piix4 drm ahci xhci_pci realtek libahci xhci_pci_renesas gpio_amdpt gpio_generic
kernel: CR2: 0000000000000018
kernel: ---[ end trace 76d04313d4214c51 ]---

Commit 4192f7b ("drm/amdgpu: unmap register bar on device init
failure") makes amdgpu_driver_unload_kms() skips amdgpu_device_fini(),
so the VGA clients remain registered. So when
vga_arbiter_notify_clients() iterates over registered clients, it causes
NULL pointer dereference.

Since there's no reason to register VGA clients that early, so solve
the issue by putting them after all the goto cleanups.

v2:
 - Remove redundant vga_switcheroo cleanup in failed: label.

Fixes: 4192f7b ("drm/amdgpu: unmap register bar on device init failure")
Signed-off-by: Kai-Heng Feng <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
nathanchance pushed a commit that referenced this issue May 11, 2021
When an amdgpu device fails to init, it makes another VGA device cause
kernel splat:
kernel: amdgpu 0000:08:00.0: amdgpu: amdgpu_device_ip_init failed
kernel: amdgpu 0000:08:00.0: amdgpu: Fatal error during GPU init
kernel: amdgpu: probe of 0000:08:00.0 failed with error -110
...
kernel: amdgpu 0000:01:00.0: vgaarb: changed VGA decodes: olddecodes=io+mem,decodes=none:owns=none
kernel: BUG: kernel NULL pointer dereference, address: 0000000000000018
kernel: #PF: supervisor read access in kernel mode
kernel: #PF: error_code(0x0000) - not-present page
kernel: PGD 0 P4D 0
kernel: Oops: 0000 [#1] SMP NOPTI
kernel: CPU: 6 PID: 1080 Comm: Xorg Tainted: G        W         5.12.0-rc8+ #12
kernel: Hardware name: HP HP EliteDesk 805 G6/872B, BIOS S09 Ver. 02.02.00 12/30/2020
kernel: RIP: 0010:amdgpu_device_vga_set_decode+0x13/0x30 [amdgpu]
kernel: Code: 06 31 c0 c3 b8 ea ff ff ff 5d c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 1f 44 00 00 55 48 8b 87 90 06 00 00 48 89 e5 53 89 f3 <48> 8b 40 18 40 0f b6 f6 e8 40 58 39 fd 80 fb 01 5b 5d 19 c0 83 e0
kernel: RSP: 0018:ffffae3c0246bd68 EFLAGS: 00010002
kernel: RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
kernel: RDX: ffff8dd1af5a8560 RSI: 0000000000000000 RDI: ffff8dce8c160000
kernel: RBP: ffffae3c0246bd70 R08: ffff8dd1af5985c0 R09: ffffae3c0246ba38
kernel: R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000246
kernel: R13: 0000000000000000 R14: 0000000000000003 R15: ffff8dce81490000
kernel: FS:  00007f9303d8fa40(0000) GS:ffff8dd1af580000(0000) knlGS:0000000000000000
kernel: CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 0000000000000018 CR3: 0000000103cfa000 CR4: 0000000000350ee0
kernel: Call Trace:
kernel:  vga_arbiter_notify_clients.part.0+0x4a/0x80
kernel:  vga_get+0x17f/0x1c0
kernel:  vga_arb_write+0x121/0x6a0
kernel:  ? apparmor_file_permission+0x1c/0x20
kernel:  ? security_file_permission+0x30/0x180
kernel:  vfs_write+0xca/0x280
kernel:  ksys_write+0x67/0xe0
kernel:  __x64_sys_write+0x1a/0x20
kernel:  do_syscall_64+0x38/0x90
kernel:  entry_SYSCALL_64_after_hwframe+0x44/0xae
kernel: RIP: 0033:0x7f93041e02f7
kernel: Code: 75 05 48 83 c4 58 c3 e8 f7 33 ff ff 0f 1f 80 00 00 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24
kernel: RSP: 002b:00007fff60e49b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
kernel: RAX: ffffffffffffffda RBX: 000000000000000b RCX: 00007f93041e02f7
kernel: RDX: 000000000000000b RSI: 00007fff60e49b40 RDI: 000000000000000f
kernel: RBP: 00007fff60e49b40 R08: 00000000ffffffff R09: 00007fff60e499d0
kernel: R10: 00007f93049350b5 R11: 0000000000000246 R12: 000056111d45e808
kernel: R13: 0000000000000000 R14: 000056111d45e7f8 R15: 000056111d46c980
kernel: Modules linked in: nls_iso8859_1 snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio snd_hda_codec_hdmi snd_hda_intel snd_intel_dspcfg snd_hda_codec snd_hwdep snd_hda_core snd_pcm snd_seq input_leds snd_seq_device snd_timer snd soundcore joydev kvm_amd serio_raw k10temp mac_hid hp_wmi ccp kvm sparse_keymap wmi_bmof ucsi_acpi efi_pstore typec_ucsi rapl typec video wmi sch_fq_codel parport_pc ppdev lp parport ip_tables x_tables autofs4 btrfs blake2b_generic zstd_compress raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx libcrc32c xor raid6_pq raid1 raid0 multipath linear dm_mirror dm_region_hash dm_log hid_generic usbhid hid amdgpu drm_ttm_helper ttm iommu_v2 gpu_sched i2c_algo_bit drm_kms_helper syscopyarea sysfillrect crct10dif_pclmul sysimgblt crc32_pclmul fb_sys_fops ghash_clmulni_intel cec rc_core aesni_intel crypto_simd psmouse cryptd r8169 i2c_piix4 drm ahci xhci_pci realtek libahci xhci_pci_renesas gpio_amdpt gpio_generic
kernel: CR2: 0000000000000018
kernel: ---[ end trace 76d04313d4214c51 ]---

Commit 4192f7b ("drm/amdgpu: unmap register bar on device init
failure") makes amdgpu_driver_unload_kms() skips amdgpu_device_fini(),
so the VGA clients remain registered. So when
vga_arbiter_notify_clients() iterates over registered clients, it causes
NULL pointer dereference.

Since there's no reason to register VGA clients that early, so solve
the issue by putting them after all the goto cleanups.

v2:
 - Remove redundant vga_switcheroo cleanup in failed: label.

Fixes: 4192f7b ("drm/amdgpu: unmap register bar on device init failure")
Signed-off-by: Kai-Heng Feng <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
nathanchance pushed a commit that referenced this issue Jul 17, 2021
ASan reports a heap-buffer-overflow in elf_sec__is_text when using perf-top.

The bug is caused by the fact that secstrs is built from runtime_ss, while
shdr is built from syms_ss if shdr.sh_type != SHT_NOBITS. Therefore, they
point to two different ELF files.

This patch renames secstrs to secstrs_run and adds secstrs_sym, so that
the correct secstrs is chosen depending on shdr.sh_type.

  $ ASAN_OPTIONS=abort_on_error=1:disable_coredump=0:unmap_shadow_on_exit=1 ./perf top
  =================================================================
  ==363148==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x61300009add6 at pc 0x00000049875c bp 0x7f4f56446440 sp 0x7f4f56445bf0
  READ of size 1 at 0x61300009add6 thread T6
    #0 0x49875b in StrstrCheck(void*, char*, char const*, char const*) (/home/user/linux/tools/perf/perf+0x49875b)
    #1 0x4d13a2 in strstr (/home/user/linux/tools/perf/perf+0x4d13a2)
    #2 0xacae36 in elf_sec__is_text /home/user/linux/tools/perf/util/symbol-elf.c:176:9
    #3 0xac3ec9 in elf_sec__filter /home/user/linux/tools/perf/util/symbol-elf.c:187:9
    #4 0xac2c3d in dso__load_sym /home/user/linux/tools/perf/util/symbol-elf.c:1254:20
    #5 0x883981 in dso__load /home/user/linux/tools/perf/util/symbol.c:1897:9
    #6 0x8e6248 in map__load /home/user/linux/tools/perf/util/map.c:332:7
    #7 0x8e66e5 in map__find_symbol /home/user/linux/tools/perf/util/map.c:366:6
    #8 0x7f8278 in machine__resolve /home/user/linux/tools/perf/util/event.c:707:13
    #9 0x5f3d1a in perf_event__process_sample /home/user/linux/tools/perf/builtin-top.c:773:6
    #10 0x5f30e4 in deliver_event /home/user/linux/tools/perf/builtin-top.c:1197:3
    #11 0x908a72 in do_flush /home/user/linux/tools/perf/util/ordered-events.c:244:9
    #12 0x905fae in __ordered_events__flush /home/user/linux/tools/perf/util/ordered-events.c:323:8
    #13 0x9058db in ordered_events__flush /home/user/linux/tools/perf/util/ordered-events.c:341:9
    #14 0x5f19b1 in process_thread /home/user/linux/tools/perf/builtin-top.c:1109:7
    #15 0x7f4f6a21a298 in start_thread /usr/src/debug/glibc-2.33-16.fc34.x86_64/nptl/pthread_create.c:481:8
    #16 0x7f4f697d0352 in clone ../sysdeps/unix/sysv/linux/x86_64/clone.S:95

0x61300009add6 is located 10 bytes to the right of 332-byte region [0x61300009ac80,0x61300009adcc)
allocated by thread T6 here:

    #0 0x4f3f7f in malloc (/home/user/linux/tools/perf/perf+0x4f3f7f)
    #1 0x7f4f6a0a88d9  (/lib64/libelf.so.1+0xa8d9)

Thread T6 created by T0 here:

    #0 0x464856 in pthread_create (/home/user/linux/tools/perf/perf+0x464856)
    #1 0x5f06e0 in __cmd_top /home/user/linux/tools/perf/builtin-top.c:1309:6
    #2 0x5ef19f in cmd_top /home/user/linux/tools/perf/builtin-top.c:1762:11
    #3 0x7b28c0 in run_builtin /home/user/linux/tools/perf/perf.c:313:11
    #4 0x7b119f in handle_internal_command /home/user/linux/tools/perf/perf.c:365:8
    #5 0x7b2423 in run_argv /home/user/linux/tools/perf/perf.c:409:2
    #6 0x7b0c19 in main /home/user/linux/tools/perf/perf.c:539:3
    #7 0x7f4f696f7b74 in __libc_start_main /usr/src/debug/glibc-2.33-16.fc34.x86_64/csu/../csu/libc-start.c:332:16

  SUMMARY: AddressSanitizer: heap-buffer-overflow (/home/user/linux/tools/perf/perf+0x49875b) in StrstrCheck(void*, char*, char const*, char const*)
  Shadow bytes around the buggy address:
    0x0c268000b560: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
    0x0c268000b570: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
    0x0c268000b580: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
    0x0c268000b590: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    0x0c268000b5a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  =>0x0c268000b5b0: 00 00 00 00 00 00 00 00 00 04[fa]fa fa fa fa fa
    0x0c268000b5c0: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
    0x0c268000b5d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    0x0c268000b5e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
    0x0c268000b5f0: 07 fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
    0x0c268000b600: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
  Shadow byte legend (one shadow byte represents 8 application bytes):
    Addressable:           00
    Partially addressable: 01 02 03 04 05 06 07
    Heap left redzone:       fa
    Freed heap region:       fd
    Stack left redzone:      f1
    Stack mid redzone:       f2
    Stack right redzone:     f3
    Stack after return:      f5
    Stack use after scope:   f8
    Global redzone:          f9
    Global init order:       f6
    Poisoned by user:        f7
    Container overflow:      fc
    Array cookie:            ac
    Intra object redzone:    bb
    ASan internal:           fe
    Left alloca redzone:     ca
    Right alloca redzone:    cb
    Shadow gap:              cc
  ==363148==ABORTING

Suggested-by: Jiri Slaby <[email protected]>
Signed-off-by: Riccardo Mancini <[email protected]>
Acked-by: Namhyung Kim <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Fabian Hemmer <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Jiri Slaby <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Remi Bernon <[email protected]>
Link: http://lore.kernel.org/lkml/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Aug 19, 2021
Clark Williams reported [1] a VM_BUG_ON in PageSlabPfmemalloc:

 page:000000009ac5dd73 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1ab3db
 flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff)
 raw: 0017ffffc0000000 ffffee1286aceb88 ffffee1287b66288 0000000000000000
 raw: 0000000000000000 0000000000100000 00000000ffffffff 0000000000000000
 page dumped because: VM_BUG_ON_PAGE(!PageSlab(page))
 ------------[ cut here ]------------
 kernel BUG at include/linux/page-flags.h:814!
 invalid opcode: 0000 [#1] PREEMPT_RT SMP PTI
 CPU: 3 PID: 12345 Comm: hackbench Not tainted 5.14.0-rc5-rt8+ #12
 Hardware name:  /NUC5i7RYB, BIOS RYBDWi35.86A.0359.2016.0906.1028 09/06/2016
 RIP: 0010:___slab_alloc+0x340/0x940
 Code: c6 48 0f a3 05 b1 7b 57 03 72 99 c7 85 78 ff ff ff ff ff ff ff 48 8b 7d 88 e9 8d fd ff ff 48 c7 c6 50 5a 7c b0 e>
 RSP: 0018:ffffba1c4a8b7ab0 EFLAGS: 00010293
 RAX: 0000000000000000 RBX: 0000000000000002 RCX: ffff9bb765118000
 RDX: 0000000000000000 RSI: ffffffffaf426050 RDI: 00000000ffffffff
 RBP: ffffba1c4a8b7b70 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9bb7410d3600
 R13: 0000000000400cc0 R14: 00000000001f7770 R15: ffff9bbe76df7770
 FS:  00007f474b1be740(0000) GS:ffff9bbe76c00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f60c04bdaf8 CR3: 0000000124f3a003 CR4: 00000000003706e0
 Call Trace:
  ? __alloc_skb+0x1db/0x270
  ? __alloc_skb+0x1db/0x270
  ? kmem_cache_alloc_node+0xa4/0x2b0
  kmem_cache_alloc_node+0xa4/0x2b0
  __alloc_skb+0x1db/0x270
  alloc_skb_with_frags+0x64/0x250
  sock_alloc_send_pskb+0x260/0x2b0
  ? bpf_lsm_socket_getpeersec_dgram+0xa/0x10
  unix_stream_sendmsg+0x27c/0x550
  ? unix_seqpacket_recvmsg+0x60/0x60
  sock_sendmsg+0xbd/0xd0
  sock_write_iter+0xb9/0x120
  new_sync_write+0x175/0x200
  vfs_write+0x3c4/0x510
  ksys_write+0xc9/0x110
  do_syscall_64+0x3b/0x90
  entry_SYSCALL_64_after_hwframe+0x44/0xae

The problem is that we are opportunistically checking flags on a page in
irq enabled section.  If we are interrupted and the page is freed, it's
not an issue as we detect it after disabling irqs.  But on kernels with
CONFIG_DEBUG_VM.  The check for PageSlab flag in PageSlabPfmemalloc() can
fail.

Fix this by creating an "unsafe" version of the check that doesn't check
PageSlab.

[1] https://lore.kernel.org/lkml/[email protected]/

Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Vlastimil Babka <[email protected]>
Reported-by: Clark Williams <[email protected]>
Tested-by: Mike Galbraith <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
nathanchance pushed a commit that referenced this issue Aug 24, 2021
Laurent reported that STRICT_MODULE_RWX was causing intermittent crashes
on one of his systems:

  kernel tried to execute exec-protected page (c008000004073278) - exploit attempt? (uid: 0)
  BUG: Unable to handle kernel instruction fetch
  Faulting instruction address: 0xc008000004073278
  Oops: Kernel access of bad area, sig: 11 [#1]
  LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: drm virtio_console fuse drm_panel_orientation_quirks ...
  CPU: 3 PID: 44 Comm: kworker/3:1 Not tainted 5.14.0-rc4+ #12
  Workqueue: events control_work_handler [virtio_console]
  NIP:  c008000004073278 LR: c008000004073278 CTR: c0000000001e9de0
  REGS: c00000002e4ef7e0 TRAP: 0400   Not tainted  (5.14.0-rc4+)
  MSR:  800000004280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE>  CR: 24002822 XER: 200400cf
  ...
  NIP fill_queue+0xf0/0x210 [virtio_console]
  LR  fill_queue+0xf0/0x210 [virtio_console]
  Call Trace:
    fill_queue+0xb4/0x210 [virtio_console] (unreliable)
    add_port+0x1a8/0x470 [virtio_console]
    control_work_handler+0xbc/0x1e8 [virtio_console]
    process_one_work+0x290/0x590
    worker_thread+0x88/0x620
    kthread+0x194/0x1a0
    ret_from_kernel_thread+0x5c/0x64

Jordan, Fabiano & Murilo were able to reproduce and identify that the
problem is caused by the call to module_enable_ro() in do_init_module(),
which happens after the module's init function has already been called.

Our current implementation of change_page_attr() is not safe against
concurrent accesses, because it invalidates the PTE before flushing the
TLB and then installing the new PTE. That leaves a window in time where
there is no valid PTE for the page, if another CPU tries to access the
page at that time we see something like the fault above.

We can't simply switch to set_pte_at()/flush TLB, because our hash MMU
code doesn't handle a set_pte_at() of a valid PTE. See [1].

But we do have pte_update(), which replaces the old PTE with the new,
meaning there's no window where the PTE is invalid. And the hash MMU
version hash__pte_update() deals with synchronising the hash page table
correctly.

[1]: https://lore.kernel.org/linuxppc-dev/[email protected]/

Fixes: 1f9ad21 ("powerpc/mm: Implement set_memory() routines")
Reported-by: Laurent Vivier <[email protected]>
Reviewed-by: Christophe Leroy <[email protected]>
Reviewed-by: Murilo Opsfelder Araújo <[email protected]>
Tested-by: Laurent Vivier <[email protected]>
Signed-off-by: Fabiano Rosas <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
nathanchance pushed a commit that referenced this issue Aug 24, 2021
Clark Williams reported [1] a VM_BUG_ON in PageSlabPfmemalloc:

 page:000000009ac5dd73 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1ab3db
 flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff)
 raw: 0017ffffc0000000 ffffee1286aceb88 ffffee1287b66288 0000000000000000
 raw: 0000000000000000 0000000000100000 00000000ffffffff 0000000000000000
 page dumped because: VM_BUG_ON_PAGE(!PageSlab(page))
 ------------[ cut here ]------------
 kernel BUG at include/linux/page-flags.h:814!
 invalid opcode: 0000 [#1] PREEMPT_RT SMP PTI
 CPU: 3 PID: 12345 Comm: hackbench Not tainted 5.14.0-rc5-rt8+ #12
 Hardware name:  /NUC5i7RYB, BIOS RYBDWi35.86A.0359.2016.0906.1028 09/06/2016
 RIP: 0010:___slab_alloc+0x340/0x940
 Code: c6 48 0f a3 05 b1 7b 57 03 72 99 c7 85 78 ff ff ff ff ff ff ff 48 8b 7d 88 e9 8d fd ff ff 48 c7 c6 50 5a 7c b0 e>
 RSP: 0018:ffffba1c4a8b7ab0 EFLAGS: 00010293
 RAX: 0000000000000000 RBX: 0000000000000002 RCX: ffff9bb765118000
 RDX: 0000000000000000 RSI: ffffffffaf426050 RDI: 00000000ffffffff
 RBP: ffffba1c4a8b7b70 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9bb7410d3600
 R13: 0000000000400cc0 R14: 00000000001f7770 R15: ffff9bbe76df7770
 FS:  00007f474b1be740(0000) GS:ffff9bbe76c00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f60c04bdaf8 CR3: 0000000124f3a003 CR4: 00000000003706e0
 Call Trace:
  ? __alloc_skb+0x1db/0x270
  ? __alloc_skb+0x1db/0x270
  ? kmem_cache_alloc_node+0xa4/0x2b0
  kmem_cache_alloc_node+0xa4/0x2b0
  __alloc_skb+0x1db/0x270
  alloc_skb_with_frags+0x64/0x250
  sock_alloc_send_pskb+0x260/0x2b0
  ? bpf_lsm_socket_getpeersec_dgram+0xa/0x10
  unix_stream_sendmsg+0x27c/0x550
  ? unix_seqpacket_recvmsg+0x60/0x60
  sock_sendmsg+0xbd/0xd0
  sock_write_iter+0xb9/0x120
  new_sync_write+0x175/0x200
  vfs_write+0x3c4/0x510
  ksys_write+0xc9/0x110
  do_syscall_64+0x3b/0x90
  entry_SYSCALL_64_after_hwframe+0x44/0xae

The problem is that we are opportunistically checking flags on a page in
irq enabled section.  If we are interrupted and the page is freed, it's
not an issue as we detect it after disabling irqs.  But on kernels with
CONFIG_DEBUG_VM.  The check for PageSlab flag in PageSlabPfmemalloc() can
fail.

Fix this by creating an "unsafe" version of the check that doesn't check
PageSlab.

[1] https://lore.kernel.org/lkml/[email protected]/

Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Vlastimil Babka <[email protected]>
Reported-by: Clark Williams <[email protected]>
Tested-by: Mike Galbraith <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
nathanchance pushed a commit that referenced this issue Aug 24, 2021
Clark Williams reported [1] a VM_BUG_ON in PageSlabPfmemalloc:

 page:000000009ac5dd73 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1ab3db
 flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff)
 raw: 0017ffffc0000000 ffffee1286aceb88 ffffee1287b66288 0000000000000000
 raw: 0000000000000000 0000000000100000 00000000ffffffff 0000000000000000
 page dumped because: VM_BUG_ON_PAGE(!PageSlab(page))
 ------------[ cut here ]------------
 kernel BUG at include/linux/page-flags.h:814!
 invalid opcode: 0000 [#1] PREEMPT_RT SMP PTI
 CPU: 3 PID: 12345 Comm: hackbench Not tainted 5.14.0-rc5-rt8+ #12
 Hardware name:  /NUC5i7RYB, BIOS RYBDWi35.86A.0359.2016.0906.1028 09/06/2016
 RIP: 0010:___slab_alloc+0x340/0x940
 Code: c6 48 0f a3 05 b1 7b 57 03 72 99 c7 85 78 ff ff ff ff ff ff ff 48 8b 7d 88 e9 8d fd ff ff 48 c7 c6 50 5a 7c b0 e>
 RSP: 0018:ffffba1c4a8b7ab0 EFLAGS: 00010293
 RAX: 0000000000000000 RBX: 0000000000000002 RCX: ffff9bb765118000
 RDX: 0000000000000000 RSI: ffffffffaf426050 RDI: 00000000ffffffff
 RBP: ffffba1c4a8b7b70 R08: 0000000000000000 R09: 0000000000000000
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9bb7410d3600
 R13: 0000000000400cc0 R14: 00000000001f7770 R15: ffff9bbe76df7770
 FS:  00007f474b1be740(0000) GS:ffff9bbe76c00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f60c04bdaf8 CR3: 0000000124f3a003 CR4: 00000000003706e0
 Call Trace:
  ? __alloc_skb+0x1db/0x270
  ? __alloc_skb+0x1db/0x270
  ? kmem_cache_alloc_node+0xa4/0x2b0
  kmem_cache_alloc_node+0xa4/0x2b0
  __alloc_skb+0x1db/0x270
  alloc_skb_with_frags+0x64/0x250
  sock_alloc_send_pskb+0x260/0x2b0
  ? bpf_lsm_socket_getpeersec_dgram+0xa/0x10
  unix_stream_sendmsg+0x27c/0x550
  ? unix_seqpacket_recvmsg+0x60/0x60
  sock_sendmsg+0xbd/0xd0
  sock_write_iter+0xb9/0x120
  new_sync_write+0x175/0x200
  vfs_write+0x3c4/0x510
  ksys_write+0xc9/0x110
  do_syscall_64+0x3b/0x90
  entry_SYSCALL_64_after_hwframe+0x44/0xae

The problem is that we are opportunistically checking flags on a page in
irq enabled section.  If we are interrupted and the page is freed, it's
not an issue as we detect it after disabling irqs.  But on kernels with
CONFIG_DEBUG_VM.  The check for PageSlab flag in PageSlabPfmemalloc() can
fail.

Fix this by creating an "unsafe" version of the check that doesn't check
PageSlab.

[1] https://lore.kernel.org/lkml/[email protected]/

Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Vlastimil Babka <[email protected]>
Reported-by: Clark Williams <[email protected]>
Tested-by: Mike Galbraith <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
nathanchance pushed a commit that referenced this issue Jan 14, 2022
If the key is already present then free the key used for lookup.

Found with:
$ perf stat -M IO_Read_BW /bin/true

==1749112==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 32 byte(s) in 4 object(s) allocated from:
    #0 0x7f6f6fa7d7cf in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
    #1 0x55acecd9d7a6 in check_per_pkg util/stat.c:343
    #2 0x55acecd9d9c5 in process_counter_values util/stat.c:365
    #3 0x55acecd9e0ab in process_counter_maps util/stat.c:421
    #4 0x55acecd9e292 in perf_stat_process_counter util/stat.c:443
    #5 0x55aceca8553e in read_counters ./tools/perf/builtin-stat.c:470
    #6 0x55aceca88fe3 in __run_perf_stat ./tools/perf/builtin-stat.c:1023
    #7 0x55aceca89146 in run_perf_stat ./tools/perf/builtin-stat.c:1048
    #8 0x55aceca90858 in cmd_stat ./tools/perf/builtin-stat.c:2555
    #9 0x55acecc05fa5 in run_builtin ./tools/perf/perf.c:313
    #10 0x55acecc064fe in handle_internal_command ./tools/perf/perf.c:365
    #11 0x55acecc068bb in run_argv ./tools/perf/perf.c:409
    #12 0x55acecc070aa in main ./tools/perf/perf.c:539

Reviewed-by: James Clark <[email protected]>
Signed-off-by: Ian Rogers <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: John Garry <[email protected]>
Cc: Kajol Jain <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Mathieu Poirier <[email protected]>
Cc: Mike Leach <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Paul Clarke <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Riccardo Mancini <[email protected]>
Cc: Stephane Eranian <[email protected]>
Cc: Suzuki Poulouse <[email protected]>
Cc: Vineet Singh <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
nathanchance pushed a commit that referenced this issue Jan 20, 2022
arm32 uses software to simulate the instruction replaced
by kprobe. some instructions may be simulated by constructing
assembly functions. therefore, before executing instruction
simulation, it is necessary to construct assembly function
execution environment in C language through binding registers.
after kasan is enabled, the register binding relationship will
be destroyed, resulting in instruction simulation errors and
causing kernel panic.

the kprobe emulate instruction function is distributed in three
files: actions-common.c actions-arm.c actions-thumb.c, so disable
KASAN when compiling these files.

for example, use kprobe insert on cap_capable+20 after kasan
enabled, the cap_capable assembly code is as follows:
<cap_capable>:
e92d47f0	push	{r4, r5, r6, r7, r8, r9, sl, lr}
e1a05000	mov	r5, r0
e280006c	add	r0, r0, #108    ; 0x6c
e1a04001	mov	r4, r1
e1a06002	mov	r6, r2
e59fa090	ldr	sl, [pc, #144]  ;
ebfc7bf8	bl	c03aa4b4 <__asan_load4>
e595706c	ldr	r7, [r5, #108]  ; 0x6c
e2859014	add	r9, r5, #20
......
The emulate_ldr assembly code after enabling kasan is as follows:
c06f1384 <emulate_ldr>:
e92d47f0	push	{r4, r5, r6, r7, r8, r9, sl, lr}
e282803c	add	r8, r2, microsoft#60     ; 0x3c
e1a05000	mov	r5, r0
e7e37855	ubfx	r7, r5, #16, #4
e1a00008	mov	r0, r8
e1a09001	mov	r9, r1
e1a04002	mov	r4, r2
ebf35462	bl	c03c6530 <__asan_load4>
e357000f	cmp	r7, #15
e7e36655	ubfx	r6, r5, #12, #4
e205a00f	and	sl, r5, #15
0a000001	beq	c06f13bc <emulate_ldr+0x38>
e0840107	add	r0, r4, r7, lsl #2
ebf3545c	bl	c03c6530 <__asan_load4>
e084010a	add	r0, r4, sl, lsl #2
ebf3545a	bl	c03c6530 <__asan_load4>
e2890010	add	r0, r9, #16
ebf35458	bl	c03c6530 <__asan_load4>
e5990010	ldr	r0, [r9, #16]
e12fff30	blx	r0
e356000f	cm	r6, #15
1a000014	bne	c06f1430 <emulate_ldr+0xac>
e1a06000	mov	r6, r0
e2840040	add	r0, r4, #64     ; 0x40
......

when running in emulate_ldr to simulate the ldr instruction, panic
occurred, and the log is as follows:
Unable to handle kernel NULL pointer dereference at virtual address
00000090
pgd = ecb46400
[00000090] *pgd=2e0fa003, *pmd=00000000
Internal error: Oops: 206 [#1] SMP ARM
PC is at cap_capable+0x14/0xb0
LR is at emulate_ldr+0x50/0xc0
psr: 600d0293 sp : ecd63af8  ip : 00000004  fp : c0a7c30c
r10: 00000000  r9 : c30897f4  r8 : ecd63cd4
r7 : 0000000f  r6 : 0000000a  r5 : e59fa090  r4 : ecd63c98
r3 : c06ae294  r2 : 00000000  r1 : b7611300  r0 : bf4ec008
Flags: nZCv  IRQs off  FIQs on  Mode SVC_32  ISA ARM  Segment user
Control: 32c5387d  Table: 2d546400  DAC: 55555555
Process bash (pid: 1643, stack limit = 0xecd60190)
(cap_capable) from (kprobe_handler+0x218/0x340)
(kprobe_handler) from (kprobe_trap_handler+0x24/0x48)
(kprobe_trap_handler) from (do_undefinstr+0x13c/0x364)
(do_undefinstr) from (__und_svc_finish+0x0/0x30)
(__und_svc_finish) from (cap_capable+0x18/0xb0)
(cap_capable) from (cap_vm_enough_memory+0x38/0x48)
(cap_vm_enough_memory) from
(security_vm_enough_memory_mm+0x48/0x6c)
(security_vm_enough_memory_mm) from
(copy_process.constprop.5+0x16b4/0x25c8)
(copy_process.constprop.5) from (_do_fork+0xe8/0x55c)
(_do_fork) from (SyS_clone+0x1c/0x24)
(SyS_clone) from (__sys_trace_return+0x0/0x10)
Code: 0050a0e1 6c0080e2 0140a0e1 0260a0e1 (f801f0e7)

Fixes: 35aa1df ("ARM kprobes: instruction single-stepping support")
Fixes: 4210157 ("ARM: 9017/2: Enable KASan for ARM")
Signed-off-by: huangshaobo <[email protected]>
Acked-by: Ard Biesheuvel <[email protected]>
Signed-off-by: Russell King (Oracle) <[email protected]>
nathanchance pushed a commit that referenced this issue Jan 28, 2022
Crashed at i.mx8qm platform when suspend if enable remote wakeup

Internal error: synchronous external abort: 96000210 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 PID: 244 Comm: kworker/u12:6 Not tainted 5.15.5-dirty #12
Hardware name: Freescale i.MX8QM MEK (DT)
Workqueue: events_unbound async_run_entry_fn
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : xhci_disable_hub_port_wake.isra.62+0x60/0xf8
lr : xhci_disable_hub_port_wake.isra.62+0x34/0xf8
sp : ffff80001394bbf0
x29: ffff80001394bbf0 x28: 0000000000000000 x27: ffff00081193b578
x26: ffff00081193b570 x25: 0000000000000000 x24: 0000000000000000
x23: ffff00081193a29c x22: 0000000000020001 x21: 0000000000000001
x20: 0000000000000000 x19: ffff800014e90490 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000002 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000960 x9 : ffff80001394baa0
x8 : ffff0008145d1780 x7 : ffff0008f95b8e80 x6 : 000000001853b453
x5 : 0000000000000496 x4 : 0000000000000000 x3 : ffff00081193a29c
x2 : 0000000000000001 x1 : 0000000000000000 x0 : ffff000814591620
Call trace:
 xhci_disable_hub_port_wake.isra.62+0x60/0xf8
 xhci_suspend+0x58/0x510
 xhci_plat_suspend+0x50/0x78
 platform_pm_suspend+0x2c/0x78
 dpm_run_callback.isra.25+0x50/0xe8
 __device_suspend+0x108/0x3c0

The basic flow:
	1. run time suspend call xhci_suspend, xhci parent devices gate the clock.
        2. echo mem >/sys/power/state, system _device_suspend call xhci_suspend
        3. xhci_suspend call xhci_disable_hub_port_wake, which access register,
	   but clock already gated by run time suspend.

This problem was hidden by power domain driver, which call run time resume before it.

But the below commit remove it and make this issue happen.
	commit c1df456 ("PM: domains: Don't runtime resume devices at genpd_prepare()")

This patch call run time resume before suspend to make sure clock is on
before access register.

Reviewed-by: Peter Chen <[email protected]>
Cc: stable <[email protected]>
Signed-off-by: Frank Li <[email protected]>
Testeb-by: Abel Vesa <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
nathanchance pushed a commit that referenced this issue Feb 14, 2022
Compressed length can be corrupted to be a lot larger than memory
we have allocated for buffer.
This will cause memcpy in copy_compressed_segment to write outside
of allocated memory.

This mostly results in stuck read syscall but sometimes when using
btrfs send can get #GP

  kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI
  kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P           OE     5.17.0-rc2-1 #12
  kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs]
  kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs
  Code starting with the faulting instruction
  ===========================================
     0:*  48 8b 06                mov    (%rsi),%rax              <-- trapping instruction
     3:   48 8d 79 08             lea    0x8(%rcx),%rdi
     7:   48 83 e7 f8             and    $0xfffffffffffffff8,%rdi
     b:   48 89 01                mov    %rax,(%rcx)
     e:   44 89 f0                mov    %r14d,%eax
    11:   48 8b 54 06 f8          mov    -0x8(%rsi,%rax,1),%rdx
  kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212
  kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8
  kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d
  kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000
  kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000
  kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000
  kernel: FS:  0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000
  kernel: CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0
  kernel: Call Trace:
  kernel:  <TASK>
  kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs
  kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs
  kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs
  kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312)
  kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455)
  kernel: ? process_one_work (kernel/workqueue.c:2397)
  kernel: kthread (kernel/kthread.c:377)
  kernel: ? kthread_complete_and_exit (kernel/kthread.c:332)
  kernel: ret_from_fork (arch/x86/entry/entry_64.S:301)
  kernel:  </TASK>

CC: [email protected] # 4.9+
Signed-off-by: Dāvis Mosāns <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
nathanchance pushed a commit that referenced this issue Feb 15, 2022
Compressed length can be corrupted to be a lot larger than memory
we have allocated for buffer.
This will cause memcpy in copy_compressed_segment to write outside
of allocated memory.

This mostly results in stuck read syscall but sometimes when using
btrfs send can get #GP

  kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI
  kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P           OE     5.17.0-rc2-1 #12
  kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs]
  kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs
  Code starting with the faulting instruction
  ===========================================
     0:*  48 8b 06                mov    (%rsi),%rax              <-- trapping instruction
     3:   48 8d 79 08             lea    0x8(%rcx),%rdi
     7:   48 83 e7 f8             and    $0xfffffffffffffff8,%rdi
     b:   48 89 01                mov    %rax,(%rcx)
     e:   44 89 f0                mov    %r14d,%eax
    11:   48 8b 54 06 f8          mov    -0x8(%rsi,%rax,1),%rdx
  kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212
  kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8
  kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d
  kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000
  kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000
  kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000
  kernel: FS:  0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000
  kernel: CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0
  kernel: Call Trace:
  kernel:  <TASK>
  kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs
  kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs
  kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs
  kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312)
  kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455)
  kernel: ? process_one_work (kernel/workqueue.c:2397)
  kernel: kthread (kernel/kthread.c:377)
  kernel: ? kthread_complete_and_exit (kernel/kthread.c:332)
  kernel: ret_from_fork (arch/x86/entry/entry_64.S:301)
  kernel:  </TASK>

CC: [email protected] # 4.9+
Signed-off-by: Dāvis Mosāns <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
nathanchance pushed a commit that referenced this issue Feb 25, 2022
Compressed length can be corrupted to be a lot larger than memory
we have allocated for buffer.
This will cause memcpy in copy_compressed_segment to write outside
of allocated memory.

This mostly results in stuck read syscall but sometimes when using
btrfs send can get #GP

  kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI
  kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P           OE     5.17.0-rc2-1 #12
  kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs]
  kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs
  Code starting with the faulting instruction
  ===========================================
     0:*  48 8b 06                mov    (%rsi),%rax              <-- trapping instruction
     3:   48 8d 79 08             lea    0x8(%rcx),%rdi
     7:   48 83 e7 f8             and    $0xfffffffffffffff8,%rdi
     b:   48 89 01                mov    %rax,(%rcx)
     e:   44 89 f0                mov    %r14d,%eax
    11:   48 8b 54 06 f8          mov    -0x8(%rsi,%rax,1),%rdx
  kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212
  kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8
  kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d
  kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000
  kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000
  kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000
  kernel: FS:  0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000
  kernel: CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0
  kernel: Call Trace:
  kernel:  <TASK>
  kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs
  kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs
  kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs
  kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312)
  kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455)
  kernel: ? process_one_work (kernel/workqueue.c:2397)
  kernel: kthread (kernel/kthread.c:377)
  kernel: ? kthread_complete_and_exit (kernel/kthread.c:332)
  kernel: ret_from_fork (arch/x86/entry/entry_64.S:301)
  kernel:  </TASK>

CC: [email protected] # 4.9+
Signed-off-by: Dāvis Mosāns <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
nathanchance pushed a commit that referenced this issue Feb 25, 2022
Ido Schimmel says:

====================
mlxsw: Various updates

This patchset contains miscellaneous updates to mlxsw gathered over
time.

Patches #1-#2 fix recent regressions present in net-next.

Patches #3-#11 are small cleanups performed while adding line card
support in mlxsw.

Patch #12 adds the SFF-8024 Identifier Value of OSFP transceiver in
order to be able to dump their EEPROM contents over the ethtool IOCTL
interface.
====================

Signed-off-by: David S. Miller <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 4, 2022
…th IO error

We inject IO error when rmdir non empty direcory, then got issue as follows:
step1: mkfs.ext4 -F /dev/sda
step2: mount /dev/sda  test
step3: cd test
step4: mkdir -p 1/2
step5: rmdir 1
	[  110.920551] ext4_empty_dir: inject fault
	[  110.921926] EXT4-fs warning (device sda): ext4_rmdir:3113: inode #12:
	comm rmdir: empty directory '1' has too many links (3)
step6: cd ..
step7: umount test
step8: fsck.ext4 -f /dev/sda
	e2fsck 1.42.9 (28-Dec-2013)
	Pass 1: Checking inodes, blocks, and sizes
	Pass 2: Checking directory structure
	Entry '..' in .../??? (13) has deleted/unused inode 12.  Clear<y>? yes
	Pass 3: Checking directory connectivity
	Unconnected directory inode 13 (...)
	Connect to /lost+found<y>? yes
	Pass 4: Checking reference counts
	Inode 13 ref count is 3, should be 2.  Fix<y>? yes
	Pass 5: Checking group summary information

	/dev/sda: ***** FILE SYSTEM WAS MODIFIED *****
	/dev/sda: 12/131072 files (0.0% non-contiguous), 26157/524288 blocks

ext4_rmdir
	if (!ext4_empty_dir(inode))
		goto end_rmdir;
ext4_empty_dir
	bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE);
	if (IS_ERR(bh))
		return true;
Now if read directory block failed, 'ext4_empty_dir' will return true, assume
directory is empty. Obviously, it will lead to above issue.
To solve this issue, if read directory block failed 'ext4_empty_dir' just
return false. To avoid making things worse when file system is already
corrupted, 'ext4_empty_dir' also return false.

Signed-off-by: Ye Bin <[email protected]>
Cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Theodore Ts'o <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 4, 2022
Ido Schimmel says:

====================
HW counters for soft devices

Petr says:

Offloading switch device drivers may be able to collect statistics of the
traffic taking place in the HW datapath that pertains to a certain soft
netdevice, such as a VLAN. In this patch set, add the necessary
infrastructure to allow exposing these statistics to the offloaded
netdevice in question, and add mlxsw offload.

Across HW platforms, the counter itself very likely constitutes a limited
resource, and the act of counting may have a performance impact. Therefore
this patch set makes the HW statistics collection opt-in and togglable from
userspace on a per-netdevice basis.

Additionally, HW devices may have various limiting conditions under which
they can realize the counter. Therefore it is also possible to query
whether the requested counter is realized by any driver. In TC parlance,
which is to a degree reused in this patch set, two values are recognized:
"request" tracks whether the user enabled collecting HW statistics, and
"used" tracks whether any HW statistics are actually collected.

In the past, this author has expressed the opinion that `a typical user
doing "ip -s l sh", including various scripts, wants to see the full
picture and not worry what's going on where'. While that would be nice,
unfortunately it cannot work:

- Packets that trap from the HW datapath to the SW datapath would be
  double counted.

  For a given netdevice, some traffic can be purely a SW artifact, and some
  may flow through the HW object corresponding to the netdevice. But some
  traffic can also get trapped to the SW datapath after bumping the HW
  counter. It is not clear how to make sure double-counting does not occur
  in the SW datapath in that case, while still making sure that possibly
  divergent SW forwarding path gets bumped as appropriate.

  So simply adding HW and SW stats may work roughly, most of the time, but
  there are scenarios where the result is nonsensical.

- HW devices will have limitations as to what type of traffic they can
  count.

  In case of mlxsw, which is part of this patch set, there is no reasonable
  way to count all traffic going through a certain netdevice, such as a
  VLAN netdevice enslaved to a bridge. It is however very simple to count
  traffic flowing through an L3 object, such as a VLAN netdevice with an IP
  address.

  Similarly for physical netdevices, the L3 object at which the counter is
  installed is the subport carrying untagged traffic.

  These are not "just counters". It is important that the user understands
  what is being counted. It would be incorrect to conflate these statistics
  with another existing statistics suite.

To that end, this patch set introduces a statistics suite called "L3
stats". This label should make it easy to understand what is being counted,
and to decide whether a given device can or cannot implement this suite for
some type of netdevice. At the same time, the code is written to make
future extensions easy, should a device pop up that can implement a
different flavor of statistics suite (say L2, or an address-family-specific
suite).

For example, using a work-in-progress iproute2[1], to turn on and then list
the counters on a VLAN netdevice:

    # ip stats set dev swp1.200 l3_stats on
    # ip stats show dev swp1.200 group offload subgroup l3_stats
    56: swp1.200: group offload subgroup l3_stats on used on
	RX:  bytes packets errors dropped  missed   mcast
		0       0      0       0       0       0
	TX:  bytes packets errors dropped carrier collsns
		0       0      0       0       0       0

The patchset progresses as follows:

- Patch #1 is a cleanup.

- In patch #2, remove the assumption that all LINK_OFFLOAD_XSTATS are
  dev-backed.

  The only attribute defined under the nest is currently
  IFLA_OFFLOAD_XSTATS_CPU_HIT. L3_STATS differs from CPU_HIT in that the
  driver that supplies the statistics is not the same as the driver that
  implements the netdevice. Make the code compatible with this in patch #2.

- In patch #3, add the possibility to filter inside nests.

  The filter_mask field of RTM_GETSTATS header determines which
  top-level attributes should be included in the netlink response. This
  saves processing time by only including the bits that the user cares
  about instead of always dumping everything. This is doubly important
  for HW-backed statistics that would typically require a trip to the
  device to fetch the stats. In this patch, the UAPI is extended to
  allow filtering inside IFLA_STATS_LINK_OFFLOAD_XSTATS in particular,
  but the scheme is easily extensible to other nests as well.

- In patch #4, propagate extack where we need it.
  In patch #5, make it possible to propagate errors from drivers to the
  user.

- In patch #6, add the in-kernel APIs for keeping track of the new stats
  suite, and the notifiers that the core uses to communicate with the
  drivers.

- In patch #7, add UAPI for obtaining the new stats suite.

- In patch #8, add a new UAPI message, RTM_SETSTATS, which will carry
  the message to toggle the newly-added stats suite.
  In patch #9, add the toggle itself.

At this point the core is ready for drivers to add support for the new
stats suite.

- In patches #10, #11 and #12, apply small tweaks to mlxsw code.

- In patch #13, add support for L3 stats, which are realized as RIF
  counters.

- Finally in patch #14, a selftest is added to the net/forwarding
  directory. Technically this is a HW-specific test, in that without a HW
  implementing the counters, it just will not pass. But devices that
  support L3 statistics at all are likely to be able to reuse this
  selftest, so it seems appropriate to put it in the general forwarding
  directory.

We also have a netdevsim implementation, and a corresponding selftest that
verifies specifically some of the core code. We intend to contribute these
later. Interested parties can take a look at the raw code at [2].

[1] https://github.com/pmachata/iproute2/commits/soft_counters
[2] https://github.com/pmachata/linux_mlxsw/commits/petrm_soft_counters_2

v2:
- Patch #3:
    - Do not declare strict_start_type at the new policies, since they are
      used with nla_parse_nested() (sans _deprecated).
    - Use NLA_POLICY_NESTED to declare what the nest contents should be
    - Use NLA_POLICY_MASK instead of BITFIELD32 for the filtering
      attribute.
- Patch #6:
    - s/monotonous/monotonic/ in commit message
    - Use a newly-added struct rtnl_hw_stats64 for stats transfer
- Patch #7:
    - Use a newly-added struct rtnl_hw_stats64 for stats transfer
- Patch #8:
    - Do not declare strict_start_type at the new policies, since they are
      used with nla_parse_nested() (sans _deprecated).
- Patch #13:
    - Use a newly-added struct rtnl_hw_stats64 for stats transfer
====================

Signed-off-by: David S. Miller <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 21, 2022
Out-of-band data automatically places a "mark" showing wherein the
sequence the out-of-band data would have been.  If the out-of-band data
implies cancelling everything sent so far, the "mark" is helpful to flush
them.  When the socket's read pointer reaches the "mark", the ioctl() below
sets a non zero value to the arg `atmark`:

The out-of-band data is queued in sk->sk_receive_queue as well as ordinary
data and also saved in unix_sk(sk)->oob_skb.  It can be used to test if the
head of the receive queue is the out-of-band data meaning the socket is at
the "mark".

While testing that, unix_ioctl() reads unix_sk(sk)->oob_skb locklessly.
Thus, all accesses to oob_skb need some basic protection to avoid
load/store tearing which KCSAN detects when these are called concurrently:

  - ioctl(fd_a, SIOCATMARK, &atmark, sizeof(atmark))
  - send(fd_b_connected_to_a, buf, sizeof(buf), MSG_OOB)

BUG: KCSAN: data-race in unix_ioctl / unix_stream_sendmsg

write to 0xffff888003d9cff0 of 8 bytes by task 175 on cpu 1:
 unix_stream_sendmsg (net/unix/af_unix.c:2087 net/unix/af_unix.c:2191)
 sock_sendmsg (net/socket.c:705 net/socket.c:725)
 __sys_sendto (net/socket.c:2040)
 __x64_sys_sendto (net/socket.c:2048)
 do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
 entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:113)

read to 0xffff888003d9cff0 of 8 bytes by task 176 on cpu 0:
 unix_ioctl (net/unix/af_unix.c:3101 (discriminator 1))
 sock_do_ioctl (net/socket.c:1128)
 sock_ioctl (net/socket.c:1242)
 __x64_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:874 fs/ioctl.c:860 fs/ioctl.c:860)
 do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
 entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:113)

value changed: 0xffff888003da0c00 -> 0xffff888003da0d00

Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 176 Comm: unix_race_oob_i Not tainted 5.17.0-rc5-59529-g83dc4c2af682 #12
Hardware name: Red Hat KVM, BIOS 1.11.0-2.amzn2 04/01/2014

Fixes: 314001f ("af_unix: Add OOB support")
Signed-off-by: Kuniyuki Iwashima <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
nathanchance pushed a commit that referenced this issue Mar 22, 2022
In remove_phb_dynamic() we use &phb->io_resource, after we've called
device_unregister(&host_bridge->dev). But the unregister may have freed
phb, because pcibios_free_controller_deferred() is the release function
for the host_bridge.

If there are no outstanding references when we call device_unregister()
then phb will be freed out from under us.

This has gone mainly unnoticed, but with slub_debug and page_poison
enabled it can lead to a crash:

  PID: 7574   TASK: c0000000d492cb80  CPU: 13  COMMAND: "drmgr"
   #0 [c0000000e4f075a0] crash_kexec at c00000000027d7dc
   #1 [c0000000e4f075d0] oops_end at c000000000029608
   #2 [c0000000e4f07650] __bad_page_fault at c0000000000904b4
   #3 [c0000000e4f076c0] do_bad_slb_fault at c00000000009a5a8
   #4 [c0000000e4f076f0] data_access_slb_common_virt at c000000000008b30
   Data SLB Access [380] exception frame:
   R0:  c000000000167250    R1:  c0000000e4f07a00    R2:  c000000002a46100
   R3:  c000000002b39ce8    R4:  00000000000000c0    R5:  00000000000000a9
   R6:  3894674d000000c0    R7:  0000000000000000    R8:  00000000000000ff
   R9:  0000000000000100    R10: 6b6b6b6b6b6b6b6b    R11: 0000000000008000
   R12: c00000000023da80    R13: c0000009ffd38b00    R14: 0000000000000000
   R15: 000000011c87f0f0    R16: 0000000000000006    R17: 0000000000000003
   R18: 0000000000000002    R19: 0000000000000004    R20: 0000000000000005
   R21: 000000011c87ede8    R22: 000000011c87c5a8    R23: 000000011c87d3a0
   R24: 0000000000000000    R25: 0000000000000001    R26: c0000000e4f07cc8
   R27: c00000004d1cc400    R28: c0080000031d00e8    R29: c00000004d23d800
   R30: c00000004d1d2400    R31: c00000004d1d2540
   NIP: c000000000167258    MSR: 8000000000009033    OR3: c000000000e9f474
   CTR: 0000000000000000    LR:  c000000000167250    XER: 0000000020040003
   CCR: 0000000024088420    MQ:  0000000000000000    DAR: 6b6b6b6b6b6b6ba3
   DSISR: c0000000e4f07920     Syscall Result: fffffffffffffff2
   [NIP  : release_resource+56]
   [LR   : release_resource+48]
   #5 [c0000000e4f07a00] release_resource at c000000000167258  (unreliable)
   #6 [c0000000e4f07a30] remove_phb_dynamic at c000000000105648
   #7 [c0000000e4f07ab0] dlpar_remove_slot at c0080000031a09e8 [rpadlpar_io]
   #8 [c0000000e4f07b50] remove_slot_store at c0080000031a0b9c [rpadlpar_io]
   #9 [c0000000e4f07be0] kobj_attr_store at c000000000817d8c
  #10 [c0000000e4f07c00] sysfs_kf_write at c00000000063e504
  #11 [c0000000e4f07c20] kernfs_fop_write_iter at c00000000063d868
  #12 [c0000000e4f07c70] new_sync_write at c00000000054339c
  #13 [c0000000e4f07d10] vfs_write at c000000000546624
  #14 [c0000000e4f07d60] ksys_write at c0000000005469f4
  #15 [c0000000e4f07db0] system_call_exception at c000000000030840
  #16 [c0000000e4f07e10] system_call_vectored_common at c00000000000c168

To avoid it, we can take a reference to the host_bridge->dev until we're
done using phb. Then when we drop the reference the phb will be freed.

Fixes: 2dd9c11 ("powerpc/pseries: use pci_host_bridge.release_fn() to kfree(phb)")
Reported-by: David Dai <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Tested-by: Sachin Sant <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
nathanchance pushed a commit that referenced this issue Apr 5, 2022
…ne() failed

Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v3.

This series is the result of the discussion on the previous approach [2].
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889f ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616

This patch (of 16):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: ca827d5 ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: Matthew Wilcox (Oracle) <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nadav Amit <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Roman Gushchin <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Peter Xu <[email protected]>
Cc: Don Dutile <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Liang Zhang <[email protected]>
Cc: Pedro Demarchi Gomes <[email protected]>
Cc: Oded Gabbay <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
nathanchance pushed a commit that referenced this issue Apr 6, 2022
…date_bw

[Why]
Below general protection fault observed when WebGL Aquarium is run for
longer duration. If drm debug logs are enabled and set to 0x1f then the
issue is observed within 10 minutes of run.

[  100.717056] general protection fault, probably for non-canonical address 0x2d33302d32323032: 0000 [#1] PREEMPT SMP NOPTI
[  100.727921] CPU: 3 PID: 1906 Comm: DrmThread Tainted: G        W         5.15.30 #12 d726c6a2d6ebe5cf9223931cbca6892f916fe18b
[  100.754419] RIP: 0010:CalculateSwathWidth+0x1f7/0x44f
[  100.767109] Code: 00 00 00 f2 42 0f 11 04 f0 48 8b 85 88 00 00 00 f2 42 0f 10 04 f0 48 8b 85 98 00 00 00 f2 42 0f 11 04 f0 48 8b 45 10 0f 57 c0 <f3> 42 0f 2a 04 b0 0f 57 c9 f3 43 0f 2a 0c b4 e8 8c e2 f3 ff 48 8b
[  100.781269] RSP: 0018:ffffa9230079eeb0 EFLAGS: 00010246
[  100.812528] RAX: 2d33302d32323032 RBX: 0000000000000500 RCX: 0000000000000000
[  100.819656] RDX: 0000000000000001 RSI: ffff99deb712c49c RDI: 0000000000000000
[  100.826781] RBP: ffffa9230079ef50 R08: ffff99deb712460c R09: ffff99deb712462c
[  100.833907] R10: ffff99deb7124940 R11: ffff99deb7124d70 R12: ffff99deb712ae44
[  100.841033] R13: 0000000000000001 R14: 0000000000000000 R15: ffffa9230079f0a0
[  100.848159] FS:  00007af121212640(0000) GS:ffff99deba780000(0000) knlGS:0000000000000000
[  100.856240] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  100.861980] CR2: 0000209000fe1000 CR3: 000000011b18c000 CR4: 0000000000350ee0
[  100.869106] Call Trace:
[  100.871555]  <TASK>
[  100.873655]  ? asm_sysvec_reschedule_ipi+0x12/0x20
[  100.878449]  CalculateSwathAndDETConfiguration+0x1a3/0x6dd
[  100.883937]  dml31_ModeSupportAndSystemConfigurationFull+0x2ce4/0x76da
[  100.890467]  ? kallsyms_lookup_buildid+0xc8/0x163
[  100.895173]  ? kallsyms_lookup_buildid+0xc8/0x163
[  100.899874]  ? __sprint_symbol+0x80/0x135
[  100.903883]  ? dm_update_plane_state+0x3f9/0x4d2
[  100.908500]  ? symbol_string+0xb7/0xde
[  100.912250]  ? number+0x145/0x29b
[  100.915566]  ? vsnprintf+0x341/0x5ff
[  100.919141]  ? desc_read_finalized_seq+0x39/0x87
[  100.923755]  ? update_load_avg+0x1b9/0x607
[  100.927849]  ? compute_mst_dsc_configs_for_state+0x7d/0xd5b
[  100.933416]  ? fetch_pipe_params+0xa4d/0xd0c
[  100.937686]  ? dc_fpu_end+0x3d/0xa8
[  100.941175]  dml_get_voltage_level+0x16b/0x180
[  100.945619]  dcn30_internal_validate_bw+0x10e/0x89b
[  100.950495]  ? dcn31_validate_bandwidth+0x68/0x1fc
[  100.955285]  ? resource_build_scaling_params+0x98b/0xb8c
[  100.960595]  ? dcn31_validate_bandwidth+0x68/0x1fc
[  100.965384]  dcn31_validate_bandwidth+0x9a/0x1fc
[  100.970001]  dc_validate_global_state+0x238/0x295
[  100.974703]  amdgpu_dm_atomic_check+0x9c1/0xbce
[  100.979235]  ? _printk+0x59/0x73
[  100.982467]  drm_atomic_check_only+0x403/0x78b
[  100.986912]  drm_mode_atomic_ioctl+0x49b/0x546
[  100.991358]  ? drm_ioctl+0x1c1/0x3b3
[  100.994936]  ? drm_atomic_set_property+0x92a/0x92a
[  100.999725]  drm_ioctl_kernel+0xdc/0x149
[  101.003648]  drm_ioctl+0x27f/0x3b3
[  101.007051]  ? drm_atomic_set_property+0x92a/0x92a
[  101.011842]  amdgpu_drm_ioctl+0x49/0x7d
[  101.015679]  __se_sys_ioctl+0x7c/0xb8
[  101.015685]  do_syscall_64+0x5f/0xb8
[  101.015690]  ? __irq_exit_rcu+0x34/0x96

[How]
It calles populate_dml_pipes which uses doubles to initialize.
Adding FPU protection avoids context switch and probable loss of vba context
as there is potential contention while drm debug logs are enabled.

Signed-off-by: CHANDAN VURDIGERE NATARAJ <[email protected]>
Reviewed-by: Rodrigo Siqueira <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
nathanchance pushed a commit that referenced this issue Apr 6, 2022
…ne() failed

Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v3.

This series is the result of the discussion on the previous approach [2].
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889f ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616

This patch (of 16):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: ca827d5 ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: Matthew Wilcox (Oracle) <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nadav Amit <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Roman Gushchin <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Peter Xu <[email protected]>
Cc: Don Dutile <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Liang Zhang <[email protected]>
Cc: Pedro Demarchi Gomes <[email protected]>
Cc: Oded Gabbay <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
nathanchance pushed a commit that referenced this issue Apr 8, 2022
…date_bw

[Why]
Below general protection fault observed when WebGL Aquarium is run for
longer duration. If drm debug logs are enabled and set to 0x1f then the
issue is observed within 10 minutes of run.

[  100.717056] general protection fault, probably for non-canonical address 0x2d33302d32323032: 0000 [#1] PREEMPT SMP NOPTI
[  100.727921] CPU: 3 PID: 1906 Comm: DrmThread Tainted: G        W         5.15.30 #12 d726c6a2d6ebe5cf9223931cbca6892f916fe18b
[  100.754419] RIP: 0010:CalculateSwathWidth+0x1f7/0x44f
[  100.767109] Code: 00 00 00 f2 42 0f 11 04 f0 48 8b 85 88 00 00 00 f2 42 0f 10 04 f0 48 8b 85 98 00 00 00 f2 42 0f 11 04 f0 48 8b 45 10 0f 57 c0 <f3> 42 0f 2a 04 b0 0f 57 c9 f3 43 0f 2a 0c b4 e8 8c e2 f3 ff 48 8b
[  100.781269] RSP: 0018:ffffa9230079eeb0 EFLAGS: 00010246
[  100.812528] RAX: 2d33302d32323032 RBX: 0000000000000500 RCX: 0000000000000000
[  100.819656] RDX: 0000000000000001 RSI: ffff99deb712c49c RDI: 0000000000000000
[  100.826781] RBP: ffffa9230079ef50 R08: ffff99deb712460c R09: ffff99deb712462c
[  100.833907] R10: ffff99deb7124940 R11: ffff99deb7124d70 R12: ffff99deb712ae44
[  100.841033] R13: 0000000000000001 R14: 0000000000000000 R15: ffffa9230079f0a0
[  100.848159] FS:  00007af121212640(0000) GS:ffff99deba780000(0000) knlGS:0000000000000000
[  100.856240] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  100.861980] CR2: 0000209000fe1000 CR3: 000000011b18c000 CR4: 0000000000350ee0
[  100.869106] Call Trace:
[  100.871555]  <TASK>
[  100.873655]  ? asm_sysvec_reschedule_ipi+0x12/0x20
[  100.878449]  CalculateSwathAndDETConfiguration+0x1a3/0x6dd
[  100.883937]  dml31_ModeSupportAndSystemConfigurationFull+0x2ce4/0x76da
[  100.890467]  ? kallsyms_lookup_buildid+0xc8/0x163
[  100.895173]  ? kallsyms_lookup_buildid+0xc8/0x163
[  100.899874]  ? __sprint_symbol+0x80/0x135
[  100.903883]  ? dm_update_plane_state+0x3f9/0x4d2
[  100.908500]  ? symbol_string+0xb7/0xde
[  100.912250]  ? number+0x145/0x29b
[  100.915566]  ? vsnprintf+0x341/0x5ff
[  100.919141]  ? desc_read_finalized_seq+0x39/0x87
[  100.923755]  ? update_load_avg+0x1b9/0x607
[  100.927849]  ? compute_mst_dsc_configs_for_state+0x7d/0xd5b
[  100.933416]  ? fetch_pipe_params+0xa4d/0xd0c
[  100.937686]  ? dc_fpu_end+0x3d/0xa8
[  100.941175]  dml_get_voltage_level+0x16b/0x180
[  100.945619]  dcn30_internal_validate_bw+0x10e/0x89b
[  100.950495]  ? dcn31_validate_bandwidth+0x68/0x1fc
[  100.955285]  ? resource_build_scaling_params+0x98b/0xb8c
[  100.960595]  ? dcn31_validate_bandwidth+0x68/0x1fc
[  100.965384]  dcn31_validate_bandwidth+0x9a/0x1fc
[  100.970001]  dc_validate_global_state+0x238/0x295
[  100.974703]  amdgpu_dm_atomic_check+0x9c1/0xbce
[  100.979235]  ? _printk+0x59/0x73
[  100.982467]  drm_atomic_check_only+0x403/0x78b
[  100.986912]  drm_mode_atomic_ioctl+0x49b/0x546
[  100.991358]  ? drm_ioctl+0x1c1/0x3b3
[  100.994936]  ? drm_atomic_set_property+0x92a/0x92a
[  100.999725]  drm_ioctl_kernel+0xdc/0x149
[  101.003648]  drm_ioctl+0x27f/0x3b3
[  101.007051]  ? drm_atomic_set_property+0x92a/0x92a
[  101.011842]  amdgpu_drm_ioctl+0x49/0x7d
[  101.015679]  __se_sys_ioctl+0x7c/0xb8
[  101.015685]  do_syscall_64+0x5f/0xb8
[  101.015690]  ? __irq_exit_rcu+0x34/0x96

[How]
It calles populate_dml_pipes which uses doubles to initialize.
Adding FPU protection avoids context switch and probable loss of vba context
as there is potential contention while drm debug logs are enabled.

Signed-off-by: CHANDAN VURDIGERE NATARAJ <[email protected]>
Reviewed-by: Rodrigo Siqueira <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
Cc: [email protected]
nathanchance pushed a commit that referenced this issue Apr 12, 2022
Ido Schimmel says:

====================
net/sched: Better error reporting for offload failures

This patchset improves error reporting to user space when offload fails
during the flow action setup phase. That is, when failures occur in the
actions themselves, even before calling device drivers. Requested /
reported in [1].

This is done by passing extack to the offload_act_setup() callback and
making use of it in the various actions.

Patches #1-#2 change matchall and flower to log error messages to user
space in accordance with the verbose flag.

Patch #3 passes extack to the offload_act_setup() callback from the
various call sites, including matchall and flower.

Patches #4-#11 make use of extack in the various actions to report
offload failures.

Patch #12 adds an error message when the action does not support offload
at all.

Patches #13-#14 change matchall and flower to stop overwriting more
specific error messages.

[1] https://lore.kernel.org/netdev/20220317185249.5mff5u2x624pjewv@skbuf/
====================

Signed-off-by: David S. Miller <[email protected]>
nathanchance pushed a commit that referenced this issue Apr 12, 2022
…ne() failed

Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v3.

This series is the result of the discussion on the previous approach [2].
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889f ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616

This patch (of 16):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: ca827d5 ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: Matthew Wilcox (Oracle) <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nadav Amit <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Roman Gushchin <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Peter Xu <[email protected]>
Cc: Don Dutile <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Liang Zhang <[email protected]>
Cc: Pedro Demarchi Gomes <[email protected]>
Cc: Oded Gabbay <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
nathanchance pushed a commit that referenced this issue Apr 13, 2022
…ne() failed

Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v3.

This series is the result of the discussion on the previous approach [2].
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889f ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616

This patch (of 16):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: ca827d5 ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: Matthew Wilcox (Oracle) <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nadav Amit <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Roman Gushchin <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Peter Xu <[email protected]>
Cc: Don Dutile <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Liang Zhang <[email protected]>
Cc: Pedro Demarchi Gomes <[email protected]>
Cc: Oded Gabbay <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
nathanchance pushed a commit that referenced this issue Apr 19, 2022
Below steps end up with crash:
- modprobe ice
- devlink dev eswitch set $PF1_PCI mode switchdev
- echo 64 > /sys/class/net/$PF1/device/sriov_numvfs
- rmmod ice

Calling ice_eswitch_port_start_xmit while the process of removing
VFs is in progress ends up with NULL pointer dereference.
That's because PR netdev is not released but some resources
are already freed. Fix it by checking if ICE_VF_DIS bit is set.

Call trace:
[ 1379.595146] BUG: kernel NULL pointer dereference, address: 0000000000000040
[ 1379.595284] #PF: supervisor read access in kernel mode
[ 1379.595410] #PF: error_code(0x0000) - not-present page
[ 1379.595535] PGD 0 P4D 0
[ 1379.595657] Oops: 0000 [#1] PREEMPT SMP PTI
[ 1379.595783] CPU: 4 PID: 974 Comm: NetworkManager Kdump: loaded Tainted: G           OE     5.17.0-rc8_mrq_dev-queue+ #12
[ 1379.595926] Hardware name: Intel Corporation S1200SP/S1200SP, BIOS S1200SP.86B.03.01.0042.013020190050 01/30/2019
[ 1379.596063] RIP: 0010:ice_eswitch_port_start_xmit+0x46/0xd0 [ice]
[ 1379.596292] Code: c7 c8 09 00 00 e8 9a c9 fc ff 84 c0 0f 85 82 00 00 00 4c 89 e7 e8 ca 70 fe ff 48 8b 7d 58 48 89 c3 48 85 ff 75 5e 48 8b 53 20 <8b> 42 40 85 c0 74 78 8d 48 01 f0 0f b1 4a 40 75 f2 0f b6 95 84 00
[ 1379.596456] RSP: 0018:ffffaba0c0d7bad0 EFLAGS: 00010246
[ 1379.596584] RAX: ffff969c14c71680 RBX: ffff969c14c71680 RCX: 000100107a0f0000
[ 1379.596715] RDX: 0000000000000000 RSI: ffff969b9d631000 RDI: 0000000000000000
[ 1379.596846] RBP: ffff969c07b46500 R08: ffff969becfca8ac R09: 0000000000000001
[ 1379.596977] R10: 0000000000000004 R11: ffffaba0c0d7bbec R12: ffff969b9d631000
[ 1379.597106] R13: ffffffffc08357a0 R14: ffff969c07b46500 R15: ffff969b9d631000
[ 1379.597237] FS:  00007f72c0e25c80(0000) GS:ffff969f13500000(0000) knlGS:0000000000000000
[ 1379.597414] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1379.597562] CR2: 0000000000000040 CR3: 000000012b316006 CR4: 00000000003706e0
[ 1379.597713] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1379.597863] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 1379.598015] Call Trace:
[ 1379.598153]  <TASK>
[ 1379.598294]  dev_hard_start_xmit+0xd9/0x220
[ 1379.598444]  sch_direct_xmit+0x8a/0x340
[ 1379.598592]  __dev_queue_xmit+0xa3c/0xd30
[ 1379.598739]  ? packet_parse_headers+0xb4/0xf0
[ 1379.598890]  packet_sendmsg+0xa15/0x1620
[ 1379.599038]  ? __check_object_size+0x46/0x140
[ 1379.599186]  sock_sendmsg+0x5e/0x60
[ 1379.599330]  ____sys_sendmsg+0x22c/0x270
[ 1379.599474]  ? import_iovec+0x17/0x20
[ 1379.599622]  ? sendmsg_copy_msghdr+0x59/0x90
[ 1379.599771]  ___sys_sendmsg+0x81/0xc0
[ 1379.599917]  ? __pollwait+0xd0/0xd0
[ 1379.600061]  ? preempt_count_add+0x68/0xa0
[ 1379.600210]  ? _raw_write_lock_irq+0x1a/0x40
[ 1379.600369]  ? ep_done_scan+0xc9/0x110
[ 1379.600494]  ? _raw_spin_unlock_irqrestore+0x25/0x40
[ 1379.600622]  ? preempt_count_add+0x68/0xa0
[ 1379.600747]  ? _raw_spin_lock_irq+0x1a/0x40
[ 1379.600899]  ? __fget_light+0x8f/0x110
[ 1379.601024]  __sys_sendmsg+0x49/0x80
[ 1379.601148]  ? release_ds_buffers+0x50/0xe0
[ 1379.601274]  do_syscall_64+0x3b/0x90
[ 1379.601399]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 1379.601525] RIP: 0033:0x7f72c1e2e35d

Fixes: f5396b8 ("ice: switchdev slow path")
Signed-off-by: Wojciech Drewek <[email protected]>
Reported-by: Marcin Szycik <[email protected]>
Reviewed-by: Michal Swiatkowski <[email protected]>
Tested-by: Sandeep Penigalapati <[email protected]>
Signed-off-by: Tony Nguyen <[email protected]>
nathanchance pushed a commit that referenced this issue Apr 19, 2022
…ne() failed

Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v3.

This series is the result of the discussion on the previous approach [2].
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889f ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616

This patch (of 16):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: ca827d5 ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: Matthew Wilcox (Oracle) <[email protected]>
Cc: Vlastimil Babka <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nadav Amit <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Roman Gushchin <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Peter Xu <[email protected]>
Cc: Don Dutile <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Liang Zhang <[email protected]>
Cc: Pedro Demarchi Gomes <[email protected]>
Cc: Oded Gabbay <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
nathanchance pushed a commit that referenced this issue Apr 29, 2022
…ne() failed

Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v4.

This series is the result of the discussion on the previous approach [2]. 
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889f ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616


This patch (of 17):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: ca827d5 ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: "Matthew Wilcox (Oracle)" <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nadav Amit <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Roman Gushchin <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Peter Xu <[email protected]>
Cc: Don Dutile <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Liang Zhang <[email protected]>
Cc: Pedro Demarchi Gomes <[email protected]>
Cc: Oded Gabbay <[email protected]>
Cc: David Hildenbrand <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
nathanchance pushed a commit that referenced this issue May 2, 2022
…ne() failed

Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v4.

This series is the result of the discussion on the previous approach [2]. 
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889f ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616


This patch (of 17):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: ca827d5 ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: "Matthew Wilcox (Oracle)" <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nadav Amit <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Roman Gushchin <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Peter Xu <[email protected]>
Cc: Don Dutile <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Liang Zhang <[email protected]>
Cc: Pedro Demarchi Gomes <[email protected]>
Cc: Oded Gabbay <[email protected]>
Cc: David Hildenbrand <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
nathanchance pushed a commit that referenced this issue May 11, 2022
…ne() failed

Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v4.

This series is the result of the discussion on the previous approach [2]. 
More information on the general COW issues can be found there.  It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).

This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.

This issue, including other related COW issues, has been summarized in [3]
under 3):
"
  3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)

  page_maybe_dma_pinned() is used to check if a page may be pinned for
  DMA (using FOLL_PIN instead of FOLL_GET).  While false positives are
  tolerable, false negatives are problematic: pages that are pinned for
  DMA must not be added to the swapcache.  If it happens, the (now pinned)
  page could be faulted back from the swapcache into page tables
  read-only.  Future write-access would detect the pinning and COW the
  page, losing synchronicity.  For the interested reader, this is nicely
  documented in feb889f ("mm: don't put pinned pages into the swap
  cache").

  Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
  cases and can result in a violation of the documented semantics: giving
  false negatives because of the race.

  There are cases where we call it without properly taking a per-process
  sequence lock, turning the usage of page_maybe_dma_pinned() racy.  While
  one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
  handle, there is especially one rmap case (shrink_page_list) that's hard
  to fix: in the rmap world, we're not limited to a single process.

  The shrink_page_list() issue is really subtle.  If we race with
  someone pinning a page, we can trigger the same issue as in the FOLL_GET
  case.  See the detail section at the end of this mail on a discussion
  how bad this can bite us with VFIO or other FOLL_PIN user.

  It's harder to reproduce, but I managed to modify the O_DIRECT
  reproducer to use io_uring fixed buffers [15] instead, which ends up
  using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
  similarly trigger a loss of synchronicity and consequently a memory
  corruption.

  Again, the root issue is that a write-fault on a page that has
  additional references results in a COW and thereby a loss of
  synchronicity and consequently a memory corruption if two parties
  believe they are referencing the same page.
"

This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently.  While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.

In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive.  Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler.  Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page.  GUP is only allowed to take a pin on anonymous pages that are
exclusive.  The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive.  We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.

Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages).  Besides these, we let the rmap code handle
most magic.  For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.

  #1 is a fix
  #3-#10 are mostly rmap preparations for PG_anon_exclusive handling
  #11 introduces PG_anon_exclusive
  #12 uses PG_anon_exclusive and make R/W pins of anonymous pages
   reliable
  #13 is a preparation for reliable R/O pins
  #14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
   make R/O pins of anonymous pages reliable
  #16 adds sanity check when (un)pinning anonymous pages

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]
[3] https://lore.kernel.org/r/[email protected]
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616


This patch (of 17):

In case arch_unmap_one() fails, we already did a swap_duplicate().  let's
undo that properly via swap_free().

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Fixes: ca827d5 ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Khalid Aziz <[email protected]>
Acked-by: Vlastimil Babka <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: David Rientjes <[email protected]>
Cc: Shakeel Butt <[email protected]>
Cc: John Hubbard <[email protected]>
Cc: Jason Gunthorpe <[email protected]>
Cc: Mike Kravetz <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: "Kirill A. Shutemov" <[email protected]>
Cc: "Matthew Wilcox (Oracle)" <[email protected]>
Cc: Jann Horn <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Nadav Amit <[email protected]>
Cc: Rik van Riel <[email protected]>
Cc: Roman Gushchin <[email protected]>
Cc: Andrea Arcangeli <[email protected]>
Cc: Peter Xu <[email protected]>
Cc: Don Dutile <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Cc: Oleg Nesterov <[email protected]>
Cc: Jan Kara <[email protected]>
Cc: Liang Zhang <[email protected]>
Cc: Pedro Demarchi Gomes <[email protected]>
Cc: Oded Gabbay <[email protected]>
Cc: David Hildenbrand <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
nathanchance pushed a commit that referenced this issue Jun 29, 2022
Ido Schimmel says:

====================
mlxsw: Unified bridge conversion - part 4/6

This is the fourth part of the conversion of mlxsw to the unified bridge
model.

Unlike previous parts that prepared mlxsw for the conversion, this part
actually starts the conversion. It focuses on flooding configuration and
converts mlxsw to the more "raw" APIs of the unified bridge model.

The patches configure the different stages of the flooding pipeline in
Spectrum that looks as follows (at a high-level):

         +------------+                +----------+           +-------+
  {FID,  |            | {Packet type,  |          |           |       |  MID
   DMAC} | FDB lookup |  Bridge type}  |   SFGC   | MID base  |       | Index
+-------->   (miss)   +----------------> register +-----------> Adder +------->
         |            |                |          |           |       |
         |            |                |          |           |       |
         +------------+                +----+-----+           +---^---+
                                            |                     |
                                    Table   |                     |
                                     type   |                     | Offset
                                            |      +-------+      |
                                            |      |       |      |
                                            |      |       |      |
                                            +----->+  Mux  +------+
                                                   |       |
                                                   |       |
                                                   +-^---^-+
                                                     |   |
                                                  FID|   |FID
                                                     |   |offset
                                                     +   +

The multicast identifier (MID) index is used as an index to the port
group table (PGT) that contains a bitmap of ports via which a packet
needs to be replicated.

From the PGT table, the packet continues to the multicast port egress
(MPE) table that determines the packet's egress VLAN. This is a
two-dimensional table that is indexed by port and switch multicast port
to egress (SMPE) index. The latter can be thought of as a FID. Without
it, all the packets replicated via a certain port would get the same
VLAN, regardless of the bridge domain (FID).

Logically, these two steps look as follows:

                     PGT table                           MPE table
             +-----------------------+               +---------------+
             |                       | {Local port,  |               | Egress
  MID index  | Local ports bitmap #1 |  SMPE index}  |               |  VID
+------------>        ...            +--------------->               +-------->
             | Local ports bitmap #N |               |               |
             |                       |          SMPE |               |
             +-----------------------+               +---------------+
                                                        Local port

Patchset overview:

Patch #1 adds a variable to guard against mixed model configuration.
Will be removed in part 6 when mlxsw is fully converted to the unified
model.

Patches #2-#5 introduce two new FID attributes required for flooding
configuration in the new model:

1. 'flood_rsp': Instructs the firmware to handle flooding configuration
for this FID. Only set for router FIDs (rFIDs) which are used to connect
a {Port, VLAN} to the router block.

2. 'bridge_type': Allows the device to determine the flood table (i.e.,
base index to the PGT table) for the FID. The first type will be used
for FIDs in a VLAN-aware bridge and the second for FIDs representing
VLAN-unaware bridges.

Patch #6 configures the MPE table that determines the egress VLAN of a
packet that is forwarded according to L2 multicast / flood.

Patches #7-#11 add the PGT table and related APIs to allocate entries
and set / clear ports in them.

Patches #12-#13 convert the flooding configuration to use the new PGT
APIs.
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Paolo Abeni <[email protected]>
nathanchance pushed a commit that referenced this issue Jul 5, 2022
Ido Schimmel says:

====================
mlxsw: Unified bridge conversion - part 6/6

This is the sixth and final part of the conversion of mlxsw to the
unified bridge model. It transitions the last bits of functionality that
were under firmware's responsibility in the legacy model to the driver.
The last patches flip the driver to the unified bridge model and clean
up code that was used to make the conversion easier to review.

Patchset overview:

Patch #1 sets the egress VID for known unicast packets. For multicast
packets, the egress VID is configured using the MPE table. See commit
8c2da08 ("mlxsw: spectrum_fid: Configure egress VID classification
for multicast").

Patch #2 configures the VNI to FID classification that is used during
decapsulation.

Patch #3 configures ingress router interface (RIF) in FID classification
records, so that when a packet reaches the router block, its ingress RIF
is known. Care is taken to configure this in all the different flows
(e.g., RIF set on a FID, {Port, VID} joins a FID that already has a RIF
etc.).

Patch #4 configures the egress VID for routed packets. For such packets,
the egress VID is not set by the MPE table or by an FDB record at the
egress bridge, but instead by a dedicated table that maps {Egress RIF,
Egress port} to a VID.

Patch #5 removes VID configuration from RIF creation as in the unified
bridge model firmware no longer needs it.

Patch #6 sets the egress FID to use in RIF configuration so that the
device knows using which FID to bridge the packet after routing.

Patches #7-#9 add a new 802.1Q family and associated VLAN RIFs. In the
unified bridge model, we no longer need to emulate 802.1Q FIDs using
802.1D FIDs as VNI can be associated with both.

Patches #10-#11 finally flip the driver to the unified bridge model.

Patches #12-#13 clean up code that was used to make the conversion
easier to review.

v2:
* Fix build failure [1] in patch #1.

[1] https://lore.kernel.org/netdev/[email protected]/
====================

Signed-off-by: David S. Miller <[email protected]>
nathanchance pushed a commit that referenced this issue Aug 3, 2022
Since commit 6493792 ("ext4: convert symlink external data block
mapping to bdev"), create new symlink with inline_data is not supported,
but it missing to handle the leftover inlined symlinks, which could
cause below error message and fail to read symlink.

 ls: cannot read symbolic link 'foo': Structure needs cleaning

 EXT4-fs error (device sda): ext4_map_blocks:605: inode #12: block
 2021161080: comm ls: lblock 0 mapped to illegal pblock 2021161080
 (length 1)

Fix this regression by adding ext4_read_inline_link(), which read the
inline data directly and convert it through a kmalloced buffer.

Fixes: 6493792 ("ext4: convert symlink external data block mapping to bdev")
Cc: [email protected]
Reported-by: Torge Matthies <[email protected]>
Signed-off-by: Zhang Yi <[email protected]>
Tested-by: Torge Matthies <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Theodore Ts'o <[email protected]>
nathanchance pushed a commit that referenced this issue Sep 19, 2022
If an FPAC exception is taken from EL1, the entry code will call
do_ptrauth_fault(), where due to:

	BUG_ON(!user_mode(regs))

... the kernel will report a problem within do_ptrauth_fault() rather
than reporting the original context the FPAC exception was taken from.
The pt_regs and ESR value reported will be from within
do_ptrauth_fault() and the code dump will be for the BRK in BUG_ON(),
which isn't sufficient to debug the cause of the original exception.

This patch makes the reporting better by having separate EL0 and EL1
FPAC exception handlers, with the latter calling die() directly to
report the original context the FPAC exception was taken from.

Note that we only need to prevent kprobes of the EL1 FPAC handler, since
the EL0 FPAC handler cannot be called recursively.

For consistency with do_el0_svc*(), I've named the split functions
do_el{0,1}_fpac() rather than do_el{0,1}_ptrauth_fault(). I've also
clarified the comment to not imply there are casues other than FPAC
exceptions.

Prior to this patch FPAC exceptions are reported as:

| kernel BUG at arch/arm64/kernel/traps.c:517!
| Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00130-g9c8a180a1cdf-dirty #12
| Hardware name: FVP Base RevC (DT)
| pstate: 00400009 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : do_ptrauth_fault+0x3c/0x40
| lr : el1_fpac+0x34/0x54
| sp : ffff80000a3bbc80
| x29: ffff80000a3bbc80 x28: ffff0008001d8000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 0000000020400009 x22: ffff800008f70fa4 x21: ffff80000a3bbe00
| x20: 0000000072000000 x19: ffff80000a3bbcb0 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783
| x5 : ffff80000a3bbcb0 x4 : ffff0008001d8000 x3 : 0000000072000000
| x2 : 0000000000000000 x1 : 0000000020400009 x0 : ffff80000a3bbcb0
| Call trace:
|  do_ptrauth_fault+0x3c/0x40
|  el1h_64_sync_handler+0xc4/0xd0
|  el1h_64_sync+0x64/0x68
|  test_pac+0x8/0x10
|  smp_init+0x7c/0x8c
|  kernel_init_freeable+0x128/0x28c
|  kernel_init+0x28/0x13c
|  ret_from_fork+0x10/0x20
| Code: 97fffe5e a8c17bfd d50323bf d65f03c0 (d4210000)

With this patch applied FPAC exceptions are reported as:

| Internal error: Oops - FPAC: 0000000072000000 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00132-g78846e1c4757-dirty #11
| Hardware name: FVP Base RevC (DT)
| pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : test_pac+0x8/0x10
| lr : 0x0
| sp : ffff80000a3bbe00
| x29: ffff80000a3bbe00 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: ffff80000a2c8000 x22: 0000000000000000 x21: 0000000000000000
| x20: ffff8000099fa5b0 x19: ffff80000a007000 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783
| x5 : ffff80000a2c6000 x4 : ffff0008001d8000 x3 : ffff800009f88378
| x2 : 0000000000000000 x1 : 0000000080210000 x0 : ffff000001a90000
| Call trace:
|  test_pac+0x8/0x10
|  smp_init+0x7c/0x8c
|  kernel_init_freeable+0x128/0x28c
|  kernel_init+0x28/0x13c
|  ret_from_fork+0x10/0x20
| Code: d50323bf d65f03c0 d503233f aa1f03fe (d50323bf)

Signed-off-by: Mark Rutland <[email protected]>
Reviewed-by: Mark Brown <[email protected]>
Reviewed-by: Anshuman Khandual <[email protected]>
Cc: Alexandru Elisei <[email protected]>
Cc: Amit Daniel Kachhap <[email protected]>
Cc: James Morse <[email protected]>
Cc: Will Deacon <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Catalin Marinas <[email protected]>
nathanchance pushed a commit that referenced this issue Oct 20, 2022
ASAN reports an use-after-free in btf_dump_name_dups:

ERROR: AddressSanitizer: heap-use-after-free on address 0xffff927006db at pc 0xaaaab5dfb618 bp 0xffffdd89b890 sp 0xffffdd89b928
READ of size 2 at 0xffff927006db thread T0
    #0 0xaaaab5dfb614 in __interceptor_strcmp.part.0 (test_progs+0x21b614)
    #1 0xaaaab635f144 in str_equal_fn tools/lib/bpf/btf_dump.c:127
    #2 0xaaaab635e3e0 in hashmap_find_entry tools/lib/bpf/hashmap.c:143
    #3 0xaaaab635e72c in hashmap__find tools/lib/bpf/hashmap.c:212
    #4 0xaaaab6362258 in btf_dump_name_dups tools/lib/bpf/btf_dump.c:1525
    #5 0xaaaab636240c in btf_dump_resolve_name tools/lib/bpf/btf_dump.c:1552
    #6 0xaaaab6362598 in btf_dump_type_name tools/lib/bpf/btf_dump.c:1567
    #7 0xaaaab6360b48 in btf_dump_emit_struct_def tools/lib/bpf/btf_dump.c:912
    #8 0xaaaab6360630 in btf_dump_emit_type tools/lib/bpf/btf_dump.c:798
    #9 0xaaaab635f720 in btf_dump__dump_type tools/lib/bpf/btf_dump.c:282
    #10 0xaaaab608523c in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:236
    #11 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #12 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #13 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #14 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #15 0xaaaab5d65990  (test_progs+0x185990)

0xffff927006db is located 11 bytes inside of 16-byte region [0xffff927006d0,0xffff927006e0)
freed by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    #1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    #2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    #3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    #4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    #5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    #6 0xaaaab6353e10 in btf__add_field tools/lib/bpf/btf.c:2032
    #7 0xaaaab6084fcc in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:232
    #8 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #9 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #10 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #11 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #12 0xaaaab5d65990  (test_progs+0x185990)

previously allocated by thread T0 here:
    #0 0xaaaab5e2c7c4 in realloc (test_progs+0x24c7c4)
    #1 0xaaaab634f4a0 in libbpf_reallocarray tools/lib/bpf/libbpf_internal.h:191
    #2 0xaaaab634f840 in libbpf_add_mem tools/lib/bpf/btf.c:163
    #3 0xaaaab636643c in strset_add_str_mem tools/lib/bpf/strset.c:106
    #4 0xaaaab6366560 in strset__add_str tools/lib/bpf/strset.c:157
    #5 0xaaaab6352d70 in btf__add_str tools/lib/bpf/btf.c:1519
    #6 0xaaaab6353ff0 in btf_add_enum_common tools/lib/bpf/btf.c:2070
    #7 0xaaaab6354080 in btf__add_enum tools/lib/bpf/btf.c:2102
    #8 0xaaaab6082f50 in test_btf_dump_incremental tools/testing/selftests/bpf/prog_tests/btf_dump.c:162
    #9 0xaaaab6097530 in test_btf_dump tools/testing/selftests/bpf/prog_tests/btf_dump.c:875
    #10 0xaaaab6314ed0 in run_one_test tools/testing/selftests/bpf/test_progs.c:1062
    #11 0xaaaab631a0a8 in main tools/testing/selftests/bpf/test_progs.c:1697
    #12 0xffff9676d214 in __libc_start_main ../csu/libc-start.c:308
    #13 0xaaaab5d65990  (test_progs+0x185990)

The reason is that the key stored in hash table name_map is a string
address, and the string memory is allocated by realloc() function, when
the memory is resized by realloc() later, the old memory may be freed,
so the address stored in name_map references to a freed memory, causing
use-after-free.

Fix it by storing duplicated string address in name_map.

Fixes: 919d2b1 ("libbpf: Allow modification of BTF and add btf__add_str API")
Signed-off-by: Xu Kuohai <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Acked-by: Martin KaFai Lau <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
nathanchance pushed a commit that referenced this issue Nov 11, 2022
Petr Machata says:

====================
mlxsw: Add 802.1X and MAB offload support

This patchset adds 802.1X [1] and MAB [2] offload support in mlxsw.

Patches #1-#3 add the required switchdev interfaces.

Patches #4-#5 add the required packet traps for 802.1X.

Patches #6-#10 are small preparations in mlxsw.

Patch #11 adds locked bridge port support in mlxsw.

Patches #12-#15 add mlxsw selftests. The patchset was also tested with
the generic forwarding selftest ('bridge_locked_port.sh').

[1] https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=a21d9a670d81103db7f788de1a4a4a6e4b891a0b
[2] https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=a35ec8e38cdd1766f29924ca391a01de20163931
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
nathanchance pushed a commit that referenced this issue Nov 14, 2022
In ata_tlink_add(), the return value of transport_add_device() is
not checked. As a result, it causes null-ptr-deref while removing
the module, because transport_remove_device() is called to remove
the device that was not added.

Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0
CPU: 33 PID: 13850 Comm: rmmod Kdump: loaded Tainted: G        W          6.1.0-rc3+ #12
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : device_del+0x48/0x39c
lr : device_del+0x44/0x39c
Call trace:
 device_del+0x48/0x39c
 attribute_container_class_device_del+0x28/0x40
 transport_remove_classdev+0x60/0x7c
 attribute_container_device_trigger+0x118/0x120
 transport_remove_device+0x20/0x30
 ata_tlink_delete+0x88/0xb0 [libata]
 ata_tport_delete+0x2c/0x60 [libata]
 ata_port_detach+0x148/0x1b0 [libata]
 ata_pci_remove_one+0x50/0x80 [libata]
 ahci_remove_one+0x4c/0x8c [ahci]

Fix this by checking and handling return value of transport_add_device()
in ata_tlink_add().

Fixes: d902747 ("[libata] Add ATA transport class")
Signed-off-by: Yang Yingliang <[email protected]>
Signed-off-by: Damien Le Moal <[email protected]>
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants