Skip to content

Ray-2.20.0

Compare
Choose a tag to compare
@can-anyscale can-anyscale released this 01 May 21:58
· 1531 commits to master since this release
5708e75

Ray Libraries

Ray Data

💫 Enhancements:

  • Dedupe repeated schema during ParquetDatasource metadata prefetching (#44750)
  • Update map_groups implementation to better handle large outputs (#44862)
  • Deprecate prefetch_batches arg of iter_rows and change default value (#44982)
  • Adding in default behavior to false for creating dirs on s3 writes (#44972)
  • Make internal UDF names more descriptive (#44985)
  • Make name a required argument for AggregateFn (#44880)

📖 Documentation:

  • Add key concepts to and revise "Data Internals" page (#44751)

Ray Train

💫 Enhancements:

  • Setup XGBoost CommunicatorContext automatically (#44883)
  • Track Train Run Info with TrainStateActor (#44585)

📖 Documentation:

  • Add documentation for accelerator_type (#44882)
  • Update Ray Train example titles (#44369)

Ray Tune

💫 Enhancements:

  • Remove trial table when running Ray Train in a Jupyter notebook (#44858)
  • Clean up temporary checkpoint directories for class Trainables (ex: RLlib) (#44366)

📖 Documentation:

  • Fix minor doc format issues (#44865)
  • Remove outdated ScalingConfig references (#44918)

Ray Serve

💫 Enhancements:

  • Handle push metric interval is now configurable with environment variable RAY_SERVE_HANDLE_METRIC_PUSH_INTERVAL_S (#32920)
  • Improve performance of developer API serve.get_app_handle (#44812)

🔨 Fixes:

  • Fix memory leak in handles for autoscaling deployments (the leak happens when
  • RAY_SERVE_COLLECT_AUTOSCALING_METRICS_ON_HANDLE=1) (#44877)

RLlib

🎉 New Features:

  • Introduce MetricsLogger, a unified API for users of RLlib to log custom metrics and stats in all of RLlib’s components (Algorithm, EnvRunners, and Learners). Rolled out for new API stack for Algorithm (training_step) and EnvRunners (custom callbacks). Learner (custom loss functions) support in progress. #44888, #44442
  • Introduce “inference-only” (slim) mode for RLModules that run inside an EnvRunner (and thus don’t require value-functions or target networks): #44797

💫 Enhancements:

  • MultiAgentEpisodeReplayBuffer for new API stack (preparation for multi-agent support of SAC and DQN): #44450
  • AlgorithmConfig cleanup and renaming of properties and methods for better consistency/transparency: #44896

🔨 Fixes:

Ray Core and Ray Clusters

💫 Enhancements:

  • Report GCS internal pubsub buffer metrics and cap message size (#44749)

🔨 Fixes:

  • Fix task submission never return when network partition happens (#44692)
  • Fix incorrect use of ssh port forward option. (#44973)
  • Make sure dashboard will exit if grpc server fails (#44928)
  • Make sure dashboard agent will exit if grpc server fails (#44899)

Thanks @can-anyscale, @hongchaodeng, @zcin, @marwan116, @khluu, @bewestphal, @scottjlee, @andrewsykim, @anyscalesam, @MortalHappiness, @justinvyu, @JoshKarpel, @woshiyyya, @rynewang, @Abirdcfly, @omatthew98, @sven1977, @marcelocarmona, @rueian, @mattip, @angelinalg, @aslonnie, @matthewdeng, @abizjakpro, @simonsays1980, @jjyao, @terraflops1048576, @hongpeng-guo, @stephanie-wang, @bw-matthew, @bveeramani, @ruisearch42, @kevin85421, @Tongruizhe

Many thanks to all those who contributed to this release!