Ray-2.33.0
Ray Libraries
Ray Core
💫 Enhancements:
- Add "last exception" to error message when GCS connection fails in ray.init() (#46516)
🔨 Fixes:
- Add object back to memory store when object recovery is skipped (#46460)
- Task status should start with PENDING_ARGS_AVAIL when retry (#46494)
- Fix ObjectFetchTimedOutError (#46562)
- Make working_dir support files created before 1980 (#46634)
- Allow full path in conda runtime env. (#45550)
- Fix worker launch time formatting in state api (#43516)
Ray Data
🎉 New Features:
- Deprecate Dataset.get_internal_block_refs() (#46455)
- Add read API for reading Databricks table with Delta Sharing (#46072)
- Add support for objects to Arrow blocks (#45272)
💫 Enhancements:
- Change offsets to int64 and change to LargeList for ArrowTensorArray (#45352)
- Prevent from_pandas from combining input blocks (#46363)
- Update Dataset.count() to avoid unnecessarily keeping
BlockRef
s in-memory (#46369) - Use Set to fix inefficient iteration over Arrow table columns (#46541)
- Add AWS Error UNKNOWN to list of retried write errors (#46646)
- Always print traceback for internal exceptions (#46647)
- Allow unknown estimate of operator output bundles and
ProgressBar
totals (#46601) - Improve filesystem retry coverage (#46685)
🔨 Fixes:
- Replace lambda mutable default arguments (#46493)
📖 Documentation:
Ray Train
💫 Enhancements:
- Update run status and actor status for train runs. (#46395)
🔨 Fixes:
- Replace lambda default arguments (#46576)
📖 Documentation:
- Add MNIST training using KubeRay doc page (#46123)
- Add example of pre-training Llama model on Intel Gaudi (#45459)
- Fix tensorflow example by using ScalingConfig (#46565)
Ray Tune
🔨 Fixes:
- Replace lambda default arguments (#46596)
Ray Serve
🎉 New Features:
- Fully deprecate
target_num_ongoing_requests_per_replica
andmax_concurrent_queries
, respectively replaced bymax_ongoing_requests
andtarget_ongoing_requests
(#46392 and #46427) - Configure the task launched by the controller to build an application with Serve’s logging config (#46347)
RLlib
💫 Enhancements:
- Moving sampling coordination for
batch_mode=complete_episodes
tosynchronous_parallel_sample
. (#46321) - Enable complex action spaces with stateful modules. (#46468)
🏗 Architecture refactoring:
- Enable multi-learner setup for hybrid stack BC. (#46436)
- Introduce Checkpointable API for RLlib components and subcomponents. (#46376)
🔨 Fixes:
- Replace Mapping typehint with Dict: #46474
📖 Documentation:
- More example scripts for new API stack: Two separate optimizers (w/ different learning rates). (#46540) and custom loss function. (#46445)
Dashboard
🔨 Fixes:
- Task end time showing the incorrect time (#46439)
- Events Table rows having really bad spacing (#46701)
- UI bugs in the serve dashboard page (#46599)
Thanks
Many thanks to all those who contributed to this release!
@alanwguo, @hongchaodeng, @anyscalesam, @brucebismarck, @bt2513, @woshiyyya, @terraflops1048576, @lorenzoritter, @omrishiv, @davidxia, @cchen777, @nono-Sang, @jackhumphries, @aslonnie, @JoshKarpel, @zjregee, @bveeramani, @khluu, @Superskyyy, @liuxsh9, @jjyao, @ruisearch42, @sven1977, @harborn, @saihaj, @zcin, @can-anyscale, @veekaybee, @chungen04, @WeichenXu123, @GeneDer, @sergey-serebryakov, @Bye-legumes, @scottjlee, @rynewang, @kevin85421, @cristianjd, @peytondmurray, @MortalHappiness, @MaxVanDijck, @simonsays1980, @mjovanovic9999